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The possibility of aecelerating completely ionized quasi-neutral plasmoids in moving high­
frequency potential wells is indicated. If such wells are formed by two fields of different fre­
quency the plasmoicls can be accelerated by changing the frequency of one of the fields or by using 
a waveguide of variable cross section. Certain features of linear and cyclical plasma accelerators 
are analyzed. 

1. INTRODUCTION 

IN accelerating quasi-neutral plasmoids or 
charged particles of one sign it is necessary to 
set up strong fields which provide acceleration as 
well as spatial stability. The latter requirement 
is predominant since any system which localizes 
a fixed plasmoid can, in principle, be used for ac­
celeration if the appropriate displacement of the 
localizing fields in space can be achieved. 

There has been a great deal of recent work in 
plasma confinement in cmmection with the well 
known problem of a controlled thermonuclear re­
action. One method is to use a weakly inhomoge­
neous high-frequency elec:tromagnetic field. The 
forces (averaged over an oscillation period) which 
act on a particle in such a field do not depend on 
the sign of the charge; this feature lies at the basis 
of all methods of using high-frequency fields for 
plasma localization.* The inhomogeneous field of 
the required configuration is produced by an ap­
propriate distribution of sources as well as the 
perturbations introduced by the plasma itself. In 
certain cases it has been possible to obtain a self­
consistent electrodynamic solution: a plasma 
sphere in a spherical resonator, 2 a plasma cylinder 
in a circular waveguide, 3 a two-dimensional plasma 
layer between ideal planes, t a plane plasma bound­
ary maintained by a plane wave which is normally 
incident on it.( In general form the problem can be 
solved only for a highly rarefied plasma (density 
small enough so that distortions introduced by the 
plasma can be neglected); in this case we actually 

*This feature was first pointed out by V. I. Veksler, who 
proposed the electromagnetic radiation pressure for accelera­
tion of plasma objects.1 

tDiplomate paper by E. I. Yakubovich, Gor'kii State Uni­
versity, 1958. 

deal with the localization of single c-harged parti­
cles.5•6 

Below we consider certain principles for the ac­
celeration of quasi-neutral plasmoids in high-fre­
quency electromagnetic fields. The properties of 
the plasma are assumed to be as follows: a) the 
plasma is completely ionized; b) during the time in 
which the bunch is accelerated a Maxwellian dis­
tribution over average particle velocity is main­
tained; c) all the particles have non-relativistic 
velocities in the reference system fixed to the 
bunch; d) the dielectric permittivity of the plasma 
is approximately unity, i.e., the density of parti­
cles N satisfies the requirement N « mew2 /4rre2 

= 3.1 x 10-8 w2, where me is the mass of the electron, 
e is the charge of the electron and w is the an­
gular frequency of the external field. Although the 
last condition is not a fundamental limitation it 
does allow us to make a complete analysis of the 
kinematic part of the problem, i.e., the displace­
ment of the localizing fields in space. 

2. LOCALIZATION OF INDIVIDUAL CHARGED 
PARTICLES 

It has been shown by Gaponov and the author5 •6 

that charged particles can be localized close to ab­
solute minima* of a high-frequency potential <I> de­
fined by the relation 

(1) 

where 17 is the charge-to-mass ratio and E is the 
amplitude of the electric field. If the profile of <I> 

is a potential well, it will trap particles that have 
velocities ]v0 ]-s-./2t::...P at the center (minimum 

*In the presence of a fixed magnetic field localization is 
possible in regions of maximum E under the condition that 
w <lwHI, where WH is the cyclotron frequency.• 
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value of <I>) where .6.<I> is the minimum potential dif­
ference between the edge and center of the well. 

We assume that this potential well is formed in 
a reference system K' which moves in the +z di­
rection with respect to the laboratory system K 
with a velocity v ({3 =v /c) and an acceleration w 
where 

(2) 

Introducing in place of (1) some effective potential* 
<I>' eff, which includes the potential of the inertia 
forces <I>' eff =<I>' + wz'' we find that if particles are 
to be trapped the following inequality must be ob­
served 

(3) 

The condition in (3) imposes an additional limita­
tion on the potential <I>'; one cannot use a <I> with 
very steep slopest: in the first place the time-of­
flight of the particle through the region of inhomo­
geneous field (L- <I>/ I '\7 <I>\) must be long enough to 
correspond to a large number of high-frequency 
periods (L » v0 /w); secondly, the amplitude of the 
high-frequency oscillations of the particle must be 
much smaller than L, L »17JE/w21. 

3. LOCALIZATION OF A PLASMOID 

If a potential well is filled by a rarified plasma 
characterized by a kinetic temperature T(VT = kT/e) 
the particle density is given by the expression3 

N (r) = N (0) exp (-meL\ <Dei 2kT), 

where k is the Boltzmann constant, .6.<I>e is the dif­
ference in the high-frequency potentials between 
the pointst rand r=O. If this difference is con­
siderably greater than 2kT /me in all directions 
the bunch is essentially localized at the center of 
the well. 

Suppose that the localizing field and the plasmoid 
move with accelerated motion and that the condition 
in (2) is satisfied; then, in place of the potential <I>'e 
it is necessary to introduce the effective potential 
<I>'eff (analogous to the potential for the electron) 
which takes account of the increase in the force of 

*The primed quantities refer to the moving coordinate sys-
tern. 

tit is precisely as a result of this situation that it is im­
possible to trap a plasmoid with a sharply defined boundary. 

:t:For simplicity, the charges of the electrons and ions are 
assumed to be the same in all cases; in the general case 
ei = Ze, in place of .:.\ci>e/2 we write Z.:.\ci>e/(Z + 1). We may 
note, moreover, that for dense plasmoids the potential differ­
ence .:.\ci>e must be determined from a self-consistent solution 
of the problem. 

inertia due to the factor mifme (mi is the mass of 
the ion, mi » me) 

(4) 

As an example we consider a sinusoidal (in the 
z direction) potential profile 

<D' (z') = <D~ + <D; cos 2h' z'. (5) 

Substituting (5) and (4) and seeking the position of 
the extrema in <I>' eff 

' mi W 
sin 2h'zextr = ---, = rx, 

me 2h'<I\ 
(6) 

for a potential difference .6.<I>'eff corresponding to 
a minimum potential differential between the edge 
and the center of the well, we have* 

.:.\.<D~rr = 2<P1 '¥(a), '¥(a)= VI -rx2 -a arc cos a. (7) 

Using these formulas it is an easy matter to 
find the maximum possible acceleration of the 
bunch since the potential difference .6.<I>'eff which 
appears in (7) is determined by the condition of 
partial or total localization of a plasma at temper­
ature T. 

4. MOVING POTENTIAL PROFILES 

As has been noted earlier, 1 a simple method of 
displacing a potential profile consists of using two 
traveling waves of different frequencies. Suppose 
that in a reference system K' moving with uniform 
motion in the z direction the field is a superposi­
tion of two plane non-uniform waves of the same 
frequency w': 

E == E~(x, y)exp(i<•/t'-ih'z') 

+ E~ (x, y) exp (iw't' + ih'z'), (8) 

then in the fixed system K this field corresponds to two 
traveling waves of different frequencies w+ and w_: 

E == E+ (x, y) exp (i<•l)- ihA 

+ E_ (x, y) exp (i(J)_i -T ih_z). (9) 

The frequencies w± and the wave numbers h± are 
related to the corresponding quantities in the K' 
system by the relations 

k (k'±h"J) •11-j --;;;, ± = ;J / v - ,J-, 

h_. == (h' + k'~) 111- 'l2 _ -· , ' V I ' (10) 

where k± = w±/c, {3 = v /c while v is the velocity 
of the K' system with respect to the K system. 

Using the fields in Eq. (8) it is possible to pro­
duce various profiles for the high-frequency poten­
tial <I>' .6 In particular, in a regular cylindrical 

*Here we are considering only the potential difference in 
the z direction. 
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lossless line two propagating waves of the same 
type form a profile of the form in (5) in which 

<D~ = ("1/ I 2w')2 [IE~ i2 + IE~ (21, 

2<D\ = ("1/ I w")2 l E~ E~ I· (11) 

Particles can be trapped in a finite region with 
cross section z = const either by virtue of the exist­
ence of an absolute minimum in <I>' (x, y, z1) or, if 
there is no such minimum, by means of a supple­
mentary fixed magnetic field Ho = Hozo· The trap­
ping in the z direction occurs as a result of the 
sinusoidal shape of the profile (5), i.e., trapping 
is possible when h' -10. 

The waves in (9) in the K system can propagate 
in the same direction (h+h- < 0) or in opposite di­
rections (h+h- > 0). Quantities referring to waves 
moving in opposite directions (anti-parallel) will 
be denoted by the subscript "a" while waves mov­
ing in the same direction (parallel) will be denoted 
by the subscript "p". In the general case it is 
also necessary to distinguish between the so­
called fast waves (h :s:: k) which exist in waveguides 
and multi-conductor lines with ideal smooth con­
ducting surfaces and the slow waves (h ~ k) which 
exist in systems with corrugated boundaries or 
with inhomogeneous (cross section z = const) di­
electrics. Although in both cases the dispersion 
equation is of the form h~ = ki- K~, in the fast­
wave case, if one considers waves in a lossless 
isotropic system the transverse wave number K 

is pure real and cannot depend on frequency K+ = 
K_ = K (regular waveguides); in the slow wave case 
K is an imaginary quantity and, in principle, does 
depend on frequency (K+ * K- if k+ * k_). In what 
follows, for simplicity we shall limit ourselves to 
regular waveguides and fast waves; the analysis 
may be carried out in genetal form without any 
specification of the waveguide cross section or the 
field configuration.* 

Two important parameters determine the use­
fulness of the profile (5) from the point of view of 
acceleration of charged particles: the constant, 
h', which characterizes the slope of the walls of 
the potential well, and the quantity 8 = v /c, which 
determines the displacement velocity of the poten­
tial wells. Using the dispersion equation h1 =k~-K 2 

and introducing the dimensionless quantities y 

= k+/k_, p2 = K2/k:, s =h' /k-, from (10) we have 

P = (k+- k_) I(: h+ 1 ±liz_,) 
(12) 

*It should be kept in mind, however, that slow-wave sys­
tems (helices, waveguides with ·ribbed walls, etc.) are prefer­
able in certain respects. Aside from t!te lower values of the 
velocity of displacement of the profiles, in the slow-wave case 
larger values of h' are achieved. 

lO tf 2.0 

FIG. 1 

(13) 

The upper sign in Eqs. (12) and (13) refers to the 
anti-parallel waves; the lower sign refers to the 
parallel waves. In Figs. 1 and 2 are shown there­
lations between f3a. f3p, sa, and sp and y for various 
values of p (the number on the curves). Inasmuch 
as exponentially decaying waves are not being con­
sidered,* y can vary within the limits p :s:: y < oo 

where 0 :s:: p :s:: 1. When y = p or p = 1 we have a 
situation in which the waveguide is excited at one 
of its critical frequencies, i.e., one of the fields 
in (9) becomes independent of the z coordinate. 
The regions of f3a and f3p, and correspondingly, sa 
and sp, are separated in Figs. 1 and 2 by dashed 
lines. 

It is apparent that {3 a (y, p) :s:: f3p (y, p) and 
sa (y, p) ~ Sp (y, p), i.e., by using waves in the 
same direction it is always possible to achieve 
higher displacement velocities for the localizing 
fields; on the other hand, the anti-parallel fields 
always form potential wells with steeper sides. 
The profile with the steepest sides is formed by 
anti-parallel TEM waves which propagate with the 
velocity of light (p = K jk_ = 0, h = k) for which, in 
accordance with Eq. (13), we havet f3a = .fy. For 
waves traveling in the same direction the most 
suitable mode of operation is the one with the 
maximum values of p: Pmax = 1, sp = ..) ( y - 1) /2. 

If the frequencies W+ and w_ are the same 
(y = 1) the profile <I>~ remains fixed (f3a = 0). The 
profile <I>p formally must be displaced with the 

*We assume that the quantity h' in Eq. (8) is pure real; an 
exponentially decaying or increasing field in the z-direction 
(9) (Im h =F 0) must correspond, in the K' system, to a field 
with complex h ', as given by Eq. (10). 

tThe application of slow waves makes it possible to in­
crease the value of sa, which, as has already been noted, 
occurs at the expense of a reduction in the velocity f3; if the 
dispersion equation is of the form h2 = k2 + X: 2 for s in 
place of Eq. (13), we have ' ' 

where p~ = xVk~, whence it follows that sa >vY. 
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FIG. 2 

group velocity of the wave f3p = ../ 1-p2; however the 
potential wells vanish since sp(1, p) = 0. 

As the value of y increases the velocity of dis­
placement of both profiles, eta_ and «<>p, increases, 
approaching the velocity of light; as far as purely 
technical considerations are concerned the veloc­
ity which can be achieved is determined by the 
conditions of localization of the plasma within the 
potential well. When y » p, s is given approxi­
mately by 

Thus s increases asymptotically in proportion 
to {y; starting at some value of the velocity the 
conditions for applicability of the average descrip­
tion of the motion of the particles in the moving 
system L- 1/h' » v0 /w' (v0 is the mean velocity 
of the electrons in a bunch) is violated: a peculiar 
"tunneling" of the particles through the potential 
barriers takes place and it becomes impossible to 
trap particles, even at very large values of «<>i. 

5. ACCELERATED POTENTIAL PROFILES 

There are two possible methods for accelerat­
ing the potential profiles formed by the fields (8). 
The first method is to vary the frequency of the 
waves (9) as a function of time; the second method 
is to vary the propagation constants h+ and h_ as 
functions of the z coordinate. In order to main­
tain the stationarity of the profile <I>' (unless this 
is done the potential description loses its signifi­
cance) these changes must be slow as compared 
with the period (27r /w) or the wavelength (27r /h): 
I dk/dt I « k2c, I dh/dz I « h2. 

We consider the features of each of these meth­
ods. Suppose that the frequency w_ is fixed while 
w+ = w+(t); this is equivalent to a variation of y in 
Eq. (12) with p = const (cf. Fig. 1). In f3a systems 
it is possible to start the acceleration from zero 
velocity (Y = 1, f3a = 0); in f3p systems it is nec­
essary to inject a bunch which has first been ac­
celerated. The magnitude of the initial velocity is 
determined by the conditions under which the po-

tential well is formed at the input of the accelera­
tor (sp > 0). The appropriate values of the acceler­
ation are found by differentiating Eq. (12). The in­
finite increase in acceleration for y - p (cf. Fig. 1) 
excludes the possibility of choosing the variable 
frequency close to one of the critical frequencies 
of the waveguide; however, generally speaking the 
fixed frequency can be set equal to one of the critical 
frequencies (p = 1). If the frequencies coincide at the 
starting time t = 0 (y = 1) and the condition tdy/dt « 1 
holds over the extent of the entire cycle, the accele­
ration, according to (12), is given by the relation 

d~a I dt = 1/2 ( 1 - p2)-'/, djl dt, 
d~P I dt = 1 I 2 p2 ( 1 - p2)-'/, d11 dt. 

Whence it follows, in particular, that a linear varia­
tion of frequency corresponds in the first period of 
acceleration to uniform acceleration of the profile. 

An important feature of the second method of 
acceleration is the fact that fixed frequencies are 
used; thus it is possible to use resonance excita­
tion of the electrodynamic system and no special 
nonlinear frequency tuning elements are required. 
A smooth variation of the propagation constant 
h(z) can be obtained in quasi-cylindrical wave­
guides or resonators in which the cross section 
and, consequently, the transverse wave number K, 

vary slowly in the z direction. The appropriate 
values of the velocities in acceleration are easily 
determined by Eq. (15) where d!3/dt = (3c(dj3/dp) 
x dp/dz. Since the parameter p must lie within 
the limits 0 ::s p ::s 1 for fast propagation, the 
maximum velocity differential, i.e., the difference 
between the velocities at the input and the output 
of the accelerator, must be [from Eq. (12)1: 

~(pa)max = Y(l-1) / (1 + 1) ~ (j-1) I (I+ 1), 

(~~p)max=1-V(!-1)/(I+ 1) 

In this case the initial velocities are different 
from zero, i.e., preliminary acceleration is re­
quired. 

It should be kept in mind that in this method the 
displaced profile necessarily becomes distorted 
since the acceleration is based on a variation of 
h± and consequently h'; hence the maximum pos­
sible velocity found from Eq. (12) may be unusable 
because the conditions required for trapping the 
bunch may no longer hold. 

6. CHOICE OF ACCELERATOR PARAMETERS 

We now analyze some of the factors that enter 
into a choice of the parameters of a high-frequency 
plasma accelerator. 

The point of departure is the fact that the con­
ditions required for localizing the bunch must be 
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observed. Taking account of Eqs. (7) and (8) and 
the requirement6 for smooth variation of the field 
amplitude E, we have 

Lw2 I 'lie~ [ E::: i )>-> V"2w (V T I 'lie'¥ (<X))'!., (14) 

where VT = kT /e. Taking L =A. /4 = 7rc/2w and 
substituting Tie= 5.3 x Ion, we write Eq. (14) in 
the form 

5. 1 . 1 08 ('¥ I v T )'I•[ E ± I ~~ (•) ~ 1.1 . 1 07 I E ± [. (15) 

Whence it follows that the trapping conditions im­
pose a rather stringent limitation on the possible 
frequency range which can be used; it is conven­
ient to choose w close to the left-hand limit in Eq. 
(15) since the limitation on frequency from above 
is weaker. Secondly, the dimensions of the locali­
zation region (L - A. /4) are actually the factors 
which determine the allowable values of the elec­
tric field intensity E: for example with L = 5 em, 
(w = 101 ~, VT =3.3 cgs (I03v), >J! = 0.5, the field 
strength must be -102 cgs (3 x I04v/cm); with 
E = 0.1 cgs (30v/cm), w:::: 107, i.e. L:::: 50 m. Thus, 
to contain a bunch in a relatively small region of 
space it is necessary to use high-frequency fields 
of rather high amplitude. 

The allowable values of w can be determined 
from Eq. (6) if it is assumed that the quantity <P~. 

in accordance with Eq. (11), is approximately 
<P~ :::: %<17e/w) 2E~v where Eav is the average value 
of the electric field in the traveling wave: 

~ 2 
Wav = IJ,av( me I m;) ( '1/e I Wav) 2 ksEav· 

For example, with w = 1010, a= 0.4, >J! = 0.5, 
mi/me = 1.8 x 103, s = 0.6, and Eav:::: 102 it is 
possible to obtain an acceleration Wav :::: 1015 

cm/sec2 • 

The acceleration and maximum velocity which 
can be realized in practice depend on the method 
of displacing the localizing; field and on the elec­
trodynamic nature of the system; in particular, if 
we require that there be a propagating mode of 
only one kind in the waveguide* it is necessary to 
vary the generator frequency in such a way that it 
remains between the first and second critical 
frequencies of the waveguide: t cK2 ::::: w ::::: cK 1; this 

*The appearance of higher propagating modes may not only 
reduce the efficiency of the accelerator but can also cause 
delocalization of the bunch. Even if the system is excited by 
an external source which produces only the required mode the 
latter can be transformed into higher modes directly at the 
plasma bunches if the dielectric constant of these bunches 
varies greatly from unity. 

t From the point of view of the most favorable conditions it 
turns out best to use the TEM mode in multiconductor lines for 
which x, = 0 and w is limited from below only by the condi­
tion in (15). 

requirement and that given in (18) set additional 
limitations on the range of w and determine the 
maximum possible velocity at the output of the ac­
celerator {3 max· 

From the technical point of view perhaps the 
most important factor which limits the applicabil­
ity of high-frequency plasma accelerators is the 
power required to form the localizing field. If 
non-resonance excitation is used this power is 
approximately equal to the mean Poynting vector 
flux in the traveling wave and can be estimated 
from the relation 

c k £2 s 
PrM =~h av' (16) 

where S is the effective cross section of the wave­
guide. 

In resonance excitation of an appropriate cylin-e 
drical configuration of length l the power P is es­
timated taking account of the Q of the system: 

PQ = s:Q ~IE [2 dV = 16:Q (kl) E!vS. (17) 

For example with A. = 20 em, S:::: A. 2/4 = 102cm2, 

h/k = 0.6 and Eav:::: I02cgs, PTE:::: 7 x 1014 joules 
(7 x 107 watts); similarly, for excitation of an ap­
propriate resonator kl = 103, Q = 10\ PQ :::: 6 x 1013 

joules (6 x 106 watts). },. further increase in the 
amplitude of the field would require the use of 
sources of enormous power, such as are generally 
used in pulsed rather than continuous operation. 

In conclusion we present typical data for a lin­
ear accelerator for hydrogen plasma at a temper­
ature VT = 103 ev, which uses anti-parallel TE01 

waves in a waveguide of rectangular cross section: 
a) w_ = 6.3 x 1010sec - 1 (A._ = 3 em), p = 0.9, 

t!..w/w = 0.27, f3max =0.2, Sav = 0.6, Eav = 103 cgs, 
Wav = 2 x I016cm/sec2, PTE:::: 3 x 108 watts; for 
operation with pulses of duration t!..t = 3 x 10-7 sec 
the length of the accelerator is l = 9 m. 

b) w = 1010sec-1 (A. = 20 em), p = 0.9, t!..w/w_ = 
0.27, f3max = 0.2, sav = 0.6, Eav = 102cgs, Wav = 
1015 cm/sec2, PTE= 7 x 107 watts, t!..t = 6 x 10-6 

sec, l = 2 x 102 m. 

7. POSSIBILITY OF CYCLIC ACCELERATION 
OF A PLASMA 

The basic difficulty in cyclic acceleration of a 
plasma lies in the containment of a quasi-neutral 
plasmoid over a stable closed trajectory. Although 
the use of weakly inhomogeneous high-frequency 
fields for this purpose is possible in principle, as 
will be shown below, these can only be used for 
small velocities. For example, suppose that it is 
necessary to achieve stable motion of a plasmoid 
about a circle of radius r.L = r 0, which is consid­
erably greater than the dimensions of the plasmoid 



ACCELERATION OF PLASMOIDS 1363 

itself. We set up a toroidal channel for the high­
frequency potential <I>(r_d in such a way that the 
circle r..L = r 0 lies within the toroidal potential 
well.* In order to compensate for the centrifugal 
forces it is necessary that the sides of the poten­
tial well be rather steep. In the non-relativistic 
approximation this limitation, similar in meaning 
to· (3), is written in the form 

I a<t> I ar j_ lr j_ =r, > m;v; I mero. (18) 

Here ve = f3ec is the mean linear velocity of the 
plasmoid. Assuming that 8<I>/8r.L- <I>/L and sub­
stituting the value of <I> in Eq. (18) from Eq. (1), 
we find the condition which limits the field in­
tensity E from below for the field which forms 
the potential barrier with respect to r.L = re, 

I E I/ ~e > (L I ro)'12 (mt I m,)'i• 2wc I ''i,· (19) 

As an example we take the values w = 2 x 1010 

sec-1, mi/me = 1.8 x 103, L/r0 -10-2• Substitu­
tion of these values in Eq. (19) yields I El lf3e > 104• 

Consequently even with velocities f3e- 10-1 one 
requires fields with intensities of E- 103cgs 
x (3 x 105v /em) and, by virtue of Eqs. (16) and (17), 
sources with powers of the order of 107 - 109 
watts. Whence it follows that in cyclical plasma 
accelerators with radial high-frequency focusing 
the velocities which can be achieved are smaller 
than those that can be obtained in corresponding 
linear accelerators; most of the power required 
from the high-frequency sources goes into the 
fields which constrain the plasmoids in the radial 
direction. 

Acceleration of plasmoids can be realized by 
displacement of supplementary potential wells pro­
duced by waves which rotate in azimuth. In this 
connection it is interesting to note that if inside a 
waveguide system which closes on itself we excite 
two standing waves of different frequencies it is 
possible to distinguish four potential profiles, which 
rotate in pairs in opposite directions with velocities 

~. = ± (k+- k_) I (h+ +h..), ~P = + (k, -- k_) I (h+- h_), 

*A toroidal channel of this kind can be produced, for ex­
ample, by means of a TM0 , mode in a corrugated metal torus of 
circular cross section, a TE01 (usual profile) or a TE mode 
(

. 11 

mverted profile) in a smooth-walled torus of circular cross 
section; symmetric waves in a helical conducting torus, and 
so on. One of the examples of the production of a two-dimen­
sional circular potential well in a cylindrical resonator has 
been given for example by Veksler and Kovrizhnykh. • 

which offers the possibility of obtaining simultan­
eous displacement and even acceleration of 
plasmoids in opposite directions. 

8. CONCLUSION 

Thus, high-frequency weakly inhomogeneous 
fields can be used for accelerating quasi-neutral 
plasmoids. This possibility has been demonstrated 
with plasmoids of low density; however, in prin­
ciple, many of the points relating to the accelera­
tion mechanism, in particular the method of dis­
placing the localizing fields, remain valid for ac­
celeration of dense plasmoids. The high-fre­
quency field is distorted significantly only in the 
immediate vicinity of the plasmoid; the field is 
unchanged (in the absence of higher modes) at far 
distances. Obviously, however, for a complete 
description of the characteristics of such accelera­
tors it will be necessary to find a self-consistent 
solution of the problem of the localization of dense 
plasma inside an accelerated high frequency po­
tential well. 

The author is indebted to A. V. Gaponov, V. B. 
Gil'denburg, and S. B. Mochenev for useful dis­
cussion of the results. 
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