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The radiative correetions to the Dirac equation in a Coulomb field are examined for distances 
r « n/mc. The calculations are carried to the first order in e2/nc and the second order in Ze2/nc. 
The resulting change in the Coulomb singularity of the wave functions is small and is hard to dis
tinguish from the effects of the finite size of the nucleus. 

l. For an electron moving in an external field the 
radiative corrections are made up of two qualita
tively different effects: the polarization of the 
electron-positron vacuum by the external field, 
and the interaction with the fluctuations of the 
photon vacuum. The first of these effects strength
ens the interaction, since the electron penetrates 
inside the screening cloud, and in the domain of 
applicability of perturbation theory the vacuum
polarization potential has the form: 1 

za• 2 ( 1 s ' 
Vpol= --- In -----lnrJ 

r 3" mr 6 ' 

1l = c = I, 1 = I. 781, 

r < ]fm, a= e2 = 1;13~(. (1) 

The photon fluctuations, on the other hand, lead to 
a "trembling" of the electron, weaken the coupling 
of the electron with the external field, and de
crease the interaction. In the region of nonrelativ
istic motion of the electron, r > 1/m, the effect of 
the trembling on the behavior of the electron can 
be described2 by replacing the potential energy by 
its average value over the fluctuation motion in the 
photon vacuum 

V (r)----. <V (r + Sr)>n 

=- ~-:a• ~ ~~ exp {iqr- q~ (f1r2)! 6}, 

where 

kmax 

<M2) = ~ I _dk = ~-ln_rrz__ 
nm2 .) k nnz2 e:0 · 

kmin 

(2) 

In this way, as is well known, one gets the correct 
result for the Lamb shift. But if one applies Eq. 
(2) for r < 1/m, then begilming at a distance 
r - r c = ( < 6r2 >) 112 - a 1Ai /m the Coulomb rise of 
the potential is arrested, and the 1/r law is re-

placed by a constant, 1/r- 1/rc. This would mean 
that at distances 10 times nuclear dimensions the 
effective potential acting on the electron has nothing 
in common with the Coulomb potential and has no 
singularity. Such a result comes naturally from 
the argument in question, since the potential is 
averaged over the region of the "trembling" of the 
electron, of the order of rc, and an electron near 
the nucleus is constantly carried out of the region 
of small r by the oscillations in the photon vacuum, 
so that the "average over the oscillations" 

1\ 
<V (r + 6r) > is finite even for r = 0. This approach 
is that of the "adiabatic" problem, in which the 
potential for a slow motion is obtained by averaging 
over a fast motion. Actually the region r < 1/m 
corresponds to ultrarelativistic motion of the elec
tron, so that the "frequency" of its motion, - 1/r, 
exceeds the characteristic frequency of the virtual 
quanta, w - m, and the oscillations have little ef
fect on the motion. We can say that in this region 
the strong Coulomb field damps the fluctuation mo
tion of the electron, and reduces the "smearing 
out." It turns out that the effective fluctuation ra
dius for r < 1/m falls off linearly with the dis
tance: ( < 6r2 >) 1~ - ra 1~ • The resultant "correc
tion to the potential" is of the order 

i.e., unlike the effect of vacuum polarization the 
correction from the photon fluctuations is small 
compared with V for all r. Therefore the weaken
ing of the interaction because of the oscillations 
remains finite at extremely small distances, and 
is described by perturbation theory for arbitrary 
r (the asymptotic values of r(p1 , p2) and G(p) for 
p- oo are equal to their "null" values to accuracy 
e~ < 1) .3 

It is not only as a matter of principle that the 
study of the radiative deviations from the Coulomb 
law at small r is of interest. In electron-nuclear 
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phenomena ((3 decay, K capture, the conversion of 
high-energy quanta) the behavior of the electron 
wave function for r- rnuc - 10-13 em is very im
portant. These functions have a Coulomb relativ
istic singularity at r = 0 

.r. Vi"""Z" f } '!' ~ (r/ao) - ex -l = expp - V 1 - Z2<X2)ln ~ , 

a0 = ljmZ<X. 

The quantity ln ( a0/rnud is about 5 for intermedi
ate and large Z. Noting that measurable quantities 
involve squares and fourth powers of the wave func
tions, we may suppose that a change of the singu
larity by a quantity of the order a will be observ
able and comparable with, for example, the effect 
of the finite size of the nucleus. 

In the language of diagrams we want to find the 
corrected "end" of the electron line in the Coulomb 
field for the case of processes taking place in the 
region r » 1/m, that is, p » m. The result in 
the form of a "corrected wave function" can be 
substituted into the various transition amplitudes. 
In many-step transitions, for example conver
sions, additional virtual processes are possible, 
and then the corresponding radiative corrections 
must be added to those we have found here. 

Calculations of the vacuum-polarization poten
tial have been made previously (see the papers of 
Schwinger1 and of Wichmann and Kroll4).* There
fore it suffices to find the correction associated 
with the "trembling." The sign of the effect will of 
course be opposite to that of the effect of the vac
uum; there is after all still a "weakening" of the 
external field. 

2. We start with Schwinger's equation for the 
motion of an electron in an external field: 5•6 

[i (p-eA- eAp) + m] ~ (x) + ~ M (x, y) t/1 (y) d4y = 0. (3) 

Here Ap is the potential of the vacuum polari
zation, and M(x, y) is the mass operator. In the 
first radiative approximation 

M (x, y) ,= om0 o (x- y)- 4rri<Xj[J.G (x, y)r [J.D (x- y). (4) 

Here G(x, y) is the Green's function of the elec
tron in the external field: 

[i (p-eA) + m] G (x, y) = o (x- y); 

D(x - y) is the Green's function of the quanta: 

*The effect of the finiteness of the nuclear radius, which 
diminishes the interaction for r < rnuc• on the motion is op
posite to that of the "incomplete screening" associated with 
the polarization of the vacuum. Therefore the result of refer
ence 4, that these effects have different signs, is obvious 
without calculation. 

D (x- y) ~ (21t t 4 ~ D (k) e1k (x-y) d4k = (2rr t 4 ~ d~: elk (x-y); 

and o m 0 is the renormalization constant-the dif
ference of the "bare" and observed masses. In the 
renormalization we follow Karplus and Klein6 and 
Feynman. 7 Let us consider the mass operator in 
the first radiative approximation; then in the mass 
term we take the unperturbed Coulomb wave func
tion, which satisfies the equation 

[i (p-eA)+ m] ~c (x) = 0 (5a) 

or in the momentum representation 

~ d4P2 [o (Pl- P2) (ip2 + m)- ieAp,-p,] ~c (P2) = 0. (5b) 

Further let us introduce instead of the function 
D(k) the cut-offfunction D A (k) = k - 2 A 2 /(A 2 + k2), 

presuming that at the end of the calculations A- oo. 

Then the constant o m 0(A) is chosen so that in the 
absence of the external field Eq. (3) would go over 
into the Dirac equation with the observed mass m: 7 

om0 (A)=m0 -m=-m;~(ln~ + !). (6) 

Then on using Eqs. (5) and (6) in the mass term 
and letting A go to 00 , we get an unambiguous 
final result, which describes the interaction of the 
particle with the vacuum fluctuations. The mass 
operator acting on the Dirac wave functions ab
sorbs within itself in gauge-invariant form all the 
divergences of the proper energy and vertex parts, 
and gives the physical effects directly. 

The interpretation of the mass term in Eq. (3) 
is obvious from a comparison of Eq. (3) with Eq. 
(2): it is the exact relativistic analogue of the ex-

" pression ( < V(r + L\r) >- V(r))w(r), i.e., the smear-
ing out of the external field by the "trembling," 
which is valid in the relativistic domain. 

Going over to the momentum representation, we 
get 

M (pl, P2) = (2rrt4 omo (A) o (P1 - P2) 

- 4rri<X ~d4k·r[J.G (Pl- k, P2-k) i[J.Dt.. (k). 

In what follows we shall be interested in dis
tances r « 1/m, i.e., Pt• p2 » m. Therefore we 
shall set m = 0 everywhere in the mass operator. 
At the same time the constant o m 0 also vanishes: 
its divergent part would in any case cancel out, 
and the finite part is proportional to m. The mass 
operator takes the form 
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For the Coulomb-field case under consideration 

ieAq = Zrxci (q0 ) ~ ;2rr2q2 • 

After integration over the time Eq. (3) goes over 
into the equation 

(cxp-~- vpol + prn)~ (r) + ~m (r, r')~(r')dr' = 0, (8) 

where UR(r, r') = fdpdp,9Jl(p, p')eipr-ip'r', with 

1 ~ A 1 1 l + -, --, dq eAp,-q -;;-----A eAq-p, -, --, + ... 
P1- k q - k Pz- k . 

y, (3 are the Dirac matrices; Eo is the energy of 
the bound state. 

(9) 

3. By introducing Feynman ordering indices8 it 
is easy to carry out the integration over the mo
menta k of the quanta in Eq. (7a), and even to 
perform the renormalization. [Here one uses 
(p - eA)~c = 0, so that terms of the form const 
x (p - eA) are dropped.] 

It is, however, more difficult to "disentangle" 
the resulting symbolic expression, even by expan-
sion in powers of Za, that to calculate the terms 
of the series (7b) directly. Therefore we use the 
expansion (9). The calculations will be carried to 
tel IDS in Z2a 2, inclusive; as Will be shown, the 
change of the wave function at the origin begins 
only with terms - Z2a 2, so that it is necessary to 
go to the second approximation. Since because of 
the presence of a numerical factor 1/27T as a com
mon multiplier the effect is a small one, calcula
tion of the terms - Z3a 3 and of higher orders can 
hardly be of interest, although experimental man
ifestation of the effect could be expected only for 
large Z. 

Let us find m(o); to make the method (cf., e.g., 
reference 9) clear we shall do the calculation in 
detail, although the result is known.8 

m(o) (pl, P2) =IX (2rrt4o (Pl- P2) pJo (Pr). 
co co co 

Jo(P) =-irn ~: ~dx~dy~dz~id4k · exp{-i[k2(x+y+z) 
0 0 0 

co 
=-p·A2 \' dxdydz(y+z) ex {-i( 2 x(y+z) +A2 t)}· J (X + y + z) 3 p p X + y + Z y 

0 

Let us introduce the variable u = y + z, du = dy, 
and then integrate with respect to z: 

co 

Jo (p) = ip I dx du _u __ e-ip'xuf(x+u) (!- e-iA'u) 
) (x + u)" · 
0 

Setting now x = ut, dx = udt and integrating with 
respect to u, we find 

co 
·'\ dt A2 +p21/{t+1) ·'(A 3) 

Jo (p) = tp j (t + 1)s In p•t I (I+ 1) A-: co tp In p + 4 . 
0 

Thus we have 

(10) 

According to Eq. (5b), in our case the operator 
f(Pt) o (Pt- P2) ip2 is equivalent to f(Pt) ieAp1-P2, 
and therefore UJl(0) can also be represented in the 
form 

m(o) (pl, P2) = (2:). p ieAp,'-i'• (ln :, + +). (11) 

Applying the method described above, we find 

PI- k ' P• -k 
X I" (p, -- k)i eAp,-p, TP. -- k)• I" 

a. · '• A' i I . \ J ( )-j (12) =(2n)• t,Je p,-p,l- n[p,-p~- -;;--; 1 pJ,Pt_• 

where 

(13) 

Combining Eqs. (11) and (12), we now get the 
following expression for the mass operator in 
first approximation in a and Za for Pt , p2 » 
m, IPtl' IP2l » Po = Eo:· 

(14) 

For the Coulomb field eVp1-P2 = Za/27r2Jp1 - p2J2. 
The gauge invariance of Eq. (14) can be checked 
easily: for V p1 -p2 - o ( p1 - P2) the expression 
(14) goes to zero. 

We shall not give here the cumbersome form of 
the operator 931 1 ( r 1, r 2) in the coordinate repre
sentation. We remark only that it can be seen from 
Eq. (9) that for the Coulomb field 'iUl (rt, r 2) is a 
homogeneous function of r 1, r 2 of degree -4. 
From Fqs. (14) and (13) it follows further that for 
r 1 - 0, 9J?1 diverges not more strongly than as 
1/r1• Therefore it is clear that for the values of 
r 1 and r 2 in question the mass operator contains 
o (r1 - r 2)/r1 and analogous expressions. For ex
ample, the last term in J 1(p1, P2) gives in the co
ordinate representation 
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Consequently the important region in the inte
gration of the expression ImHr1, r2) l)! c(r2)dr2 over 
r 2 .is that in which jr1 - r 2l ;::, r 1 . In the nonrela
tivistic case r 1 > 1 /m the important region is that 
in which jr1 - r 2j ;::, 1/m.6 The difference is due 
to the difference we have mentioned between the 
natures of the fluctuation motion for r > 1 /m and 
r < 1/m: for r < 1/m the "radius of fluctuation" 
is proportional to r. 

4. In order to find the change of the Coulomb 
singularity of the S and PY:; states, in what fol

lows we shall seek to obtain directly the quantity 
I ~m (r1 , r 2) ljJ c(r2)dr2 in Eq. (8); here ljJ c(r) is 
the Coulomb function. If we consider elements 
other than the very lightest, so that rm - rnucm 
« Za, the wave function in which we are interested 
has the form (for definiteness we shall speak of 
the S state): 

Uo =o ( tJ ) or ( ~ ') (15a) 

or in the momentum representation 
.r ) _ " __ 3 (' c 1 (Zo:) uo \ 
'fc (P --· p _c, (Z:x)-(ap)uo/p)' (15b) 

where y = 1- (1- Z2a 2)~, .and c 1 and c2 are 
certain functions of Za . 

Since l/lc(P) and ~m are homogeneous functions 
of Pt> p2, the quantity I ~m ( (p1 , P2) l/lc(p2)dp2 is ob
viously proportional to p{-2; that is, in the coordi-
nate representation 

~9.R(r1 , r~)yc(r,)dr, 
" 

(16) 

where B is a certain spinor operator; the factor 
a /27T is separated out for convenience. From what 
has been said there follows the assertion used 
earlier, that for p1 » m values P2 - p1 » m are 
also important in ~m (p1, P2): the integral 
I 9.R (Pt• P2) 1/1 c( p2)dp2 converges in the region 
P2-Pt· 

From the invariance of the complete equation 
(3), (8) under rotational and space-time reflections 
it follows that the operator B in Eq. (16) has the 
form 

B (b, +) = bf1 (Z2o:2) + i :r Z2o:2 f2 (Z2o:2), (17) 

where f 1, f2 are real even functions of Za . ... 
We shall calculate the operator B to accuracy 

Z2a 2. Using the fact that the difference between 
each component of the wave function and the first 
term of its expansion in powers of Za is a quan
tity - y - Z2a 2, and that the operator 9.R already 
contains Za, in finding B we can replace the wave 
function (15) in the mass integral by the first terms 
of the expansion: 

y (r) _c_ ~ (r) = ( ?o (r) \} = const · ( 110 \ 
c 0 - \zo (r) · (ir I Zo:) (ar uo), r I ' 

yc(p)- · ~0 (p) = const · ( (r 1 Zx)i\~~ ::); r:'p• ) . (18) 

Having so obtained the answer in the form of 
Eq. (16) with 1/1 as given in Eq. (18), we shall de
termine the first terms of the expansion of B, 
i.e., of the functions f1 and f2 in Eq. (17) . Having 
found B, we can again use Eq. (16) with the exact 
Coulomb function 1/ic(r). This decidedly simpli
fies the calculations; to use the formulas (15) in 
finding B would be to get useless further accuracy, 
since B is subject to expansion in powers of Za. 

Thus Eq. (8) with 9.R from Eq. (14) is now 
written 

cp;_- (Zo: r + Vpo1) 'f -j mcp 

+ ~ 9.Rl (r, r') rPo (r') dr' ~ 0, 

cpcp- (Zcx . r + V pol) !. - mz 

~ 9)(1 (r, r') /.o (r') dr' 0 = 0. 

(19a) 

(19b) 

The mass term in Eq. (19a) is found immediately: 

r dE,dt , , (Pi i- p;t) -- p~p~E, \ 

- ) (;-~- (p' ~- p~t) ~ + (Pt- p,)·;~) 
0 l - . 

Z:t.' 
X o (p,) •·· L.-:r 'f 11 (r). (20) 

The direct calculation of the mass term in Eq. (19b) 
is rather cumbersome. Using Eqs. (17) and (20), 
however, we at once conclude that this term is 
( Za 2 /2u)x 0(r). 

Thus, combining the results of the first approx
imation, we have for the equation (8) , with ac
curacy Za 2 

(op :1m-- Zo: .. r --· V pol ~-b." 2::r):); (r) ·- 0. 

5. In finding the next approximation we again 
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use Eq. (17); we shall carry through the calcula
tion only for the integral J9)((2)(p, p')(27lio(p')dp'. 

According to Eq. (9) we have 

(2::)) ~lJil ') (p, 0) = :::: ~ 

""d4k p-k r q-k -k dq (21) 
/ ~FI~-' (p-k)z ;:i(i/-kJ"~ ~~~-' q2(p-q)2 

(throughout, the two-dimensional part of the prod
uct of the four-rowed matrices is to be understood). 
It is convenient to separate the factor - k = -y k 
- (3 k4 into its space and time parts and calculate 
the corresponding integrals J A and JB separately: 

(2rr)3 !)){(2) (p, 0) = z~~1 ~ (J A + Js), 

J __ 1_ \ dq o . r 
.l,B- 2''7tti ~ q' (p-q)2 11-'lnP'Inq:l 

\ d•k 3 (p -- k)n (q- k)lll 
x~F(~rk.~,k4) h (p--kJ2(q-kJ2 (22) 

Applying the method that has been described for 
the integration over k, using the equation af/8 k 
x (p -k)= -8f(p-k)/8p in the calculation of JA, 
and noting in the calculation of JB that the fourth 
components of p and q are absent, i.e., the terms 
linear in k4 are to be set equal to zero, we get 

1 __ i 1 1 dq ( a a ) 1 
•. l - - (~r.)• ~ If Tq_ :t-ap (p- q)2 

00 

X \ d~dl lfz (pZ + q21) -- ~q p 
j (~+1+1)" (p2+q2t)~+(p-q)21' 
0 

00 

i \. dq 1 ~d~dt ( ;; + qot 
JB =211t4 J q2(p-q)2 ~ (~+1+1)2 2 ~+1+1 

0 

0 0' 1 
- p - q) (p2+ q2t) ~ + (p- q)"l • (23) 

The calculation of the integrals J A• JB is ac
complished by integration by parts, change of 
variables, and integration in the complex plane; 
because of the special nature of the expressions 
we omit the calculations. The results are: 

r Cl.j) ( r. 2 5 ) ;~J B = 47tp3 12 -- T . (24) 

Equating the Fourier transform of Eq. (17) to Eqs. 
(24), (22), we find 

f 2 (Z21X2) = f rrz ---} + 0 (Z21X2). (24') 

The expansion of the vacuum-polarization po
tential contains only odd powers of ZO!, 4 so that to 
our present accuracy Eq. (8) for small distances 
can be written 

[ + 0 Zrz V atp . pm- r - pol 

(25) 

For the main component cp (r) of the wave func
tion we get in the region in question 

= 1 + ~2rz 3 {_;_·[ln2 _1_ +In__!__ +_1_ 
L7t 3 rm rrn .!. 

For Z = 92, r- rnuc = 6 x 10-13 em the right 
member of Eq. (26) differs from unity by 

(27) 

At present such a small change of the wave 
function cannot be distinguished from the effects of 
the finite dimensions of the nucleus, the distribu
tion of charge in the nucleus, etc., and is obviously 
unobservable. 
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