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Elastic and inelastic scattering of fast charged particles on black nonspherical nuclei is investi­
gated in the diffraction approximation. The radius of the nucleus and its nonsphericity parameter 
can be determined by comparing the calculations with experimental data. 

1. INTRODUCTION 

ExciTATION of collective states in the nucleus 
takes place during the scattering of nucleons on 
nonspherical nuclei by the process of direct inter­
action of the incident particle with the nuclear 
surface. In this connection we will investigate the 
scattering of charged particles (protons, alpha 
particles) with an energy E which considerably 
exceeds the coulomb barrier ZZ' e2 /R when con­
dition (1) is fulfilled 

(1) 

where 1J = ZZ'e2/tiv is the Coulomb parameter, k 
is the wave number of the incident particle, and 
R is the radius of the nucleus. Assuming that 
the nucleus is black, we find the differential cross 
section for elastic and inelastic scattering with 
excitation of the first rotational level of an even­
odd nucleus. If, in addition to (1), condition (2) is 
fulfilled 

(2) 

where ~E is the energy of the excited level, then 
in the process of scattering the nucleus can be 
considered immovable and the change in the en­
ergy of the particles in inelastic scattering can be 
ignored. In this case the adiabatic approximation 
is applicable, according to which the solution of the 
scattering problem reduces to finding the scatter­
ing amplitudes f(n, w) of particles from a fixed 
nucleus, where the angles n = (8, rp) determine 
the direction of scattering and the angles w = (J,<(J) 
show the orientation of the axis of symmetry of the 
nucleus. Formula (3) gives the differential scat­
tering cross section with excitation of the rota­
tional level of the even-odd nucleus with momen­
tum A. 

J;(IJ) Li<Y;,,(ro)i(i2.r•>)Y 0n'; 2 • (3) 
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If condition (1) is fulfilled, it is possible to calcu­
late the scattering amplitude f(n,w) from the fixed 
black nucleus using the diffraction theory method1- 4 

in which the energy of interaction is considered as 
excitation. 

2. SCATTERING AMPLITUDE 

If the energy of the particles considerably ex­
ceeds the coulomb barrier (1) then the wave func­
tion describing the scattering of charged particles 
from a black nucleus, in cylindrical coordinates 
with the polar axis z along the wave vector k of 
the incident particles, has the form 1 

z 

'1\(p,z) =!2(p)expi[kz-- J:v \ U(p, z)dzl. (4) 
z, 

Here, n (p) is the function which accounts for the 
characteristics of a black nucleus: to the right of 
the nucleus (z > 0), n (p) = 1 on all planes z = const, 
aside from the shadow of the nucleus within whose 
limits n (p) = 0. The function U (pzz) is the energy 
of the electric interaction of the particle with the 
nucleus. If the equation of the nuclear surface, in 
the coordinate system connected with the axis of 
symmetry of the nucleus, can be written in the 
form r(J-t) = R(1 + aAPA(J-t )), A= 2, then for small 
nonsphericity parameters a A we have 

(5) 

in formula (4) z 0 signifies a rather large scatter­
ing to the left of the nucleus for which the wave 
function satisfies the condition 

'¥ k (p, ---- Zo) =• e-ila". (6) 

According to Akhiezer and Sitenko2 the scattering 
amplitude for particles from a fixed nucleus can 
be represented in the following form: 
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f (Q, w) = - ~ ~ dpe-ik'p [':P' k (p, z0 ) e-ikz, - I], (7) 

where k' is the wave vector of the scattered parti­
cle, and the integration is done over the entire 
plane. The square brackets contain the expression 
which represents the scattered wave. 

For scattering through the angles fJ I 0, the last 
term in square brackets can be omitted. In addi­
tion, using (4), (5) with z0 -- oo we have 

e-ikz, 'F k (p, Zo) = n (p) exp {- iYJ [ 2 In 2kzo- 2ln kp 

(8) 

In discarding the inessential phase factor 
exp( -i21)ln2kz0) and changing the variable of in­
tegration, we obtain with the help of (7) and (8) 
the following expression for the scattering ampli­
tude: 

21t 00 

f (!.2, w) =- ~ ~ dcp' ~ dp P (t~p)2i~ 
P('i'') 

1 

X ~ (I _ fl-'2)1-/2-1 y '-~-< (p,', rp') d[L' ]} . (9) 
-1 

In this formula the integration is done over the 
entire plane except for the nuclear shadow. It is 
not difficult to show that in the linear approxima­
tion for small non-sphericity parameters O!A_ 

the nuclear shadow on the plane perpendicular to 
the vector k has the following form 

p (cp') = R +Roc"~ 2~.4: i v;., (bl) Y1,., ( y, cp'). (10) 

To find the cross section for elastic or in­
elastic scattering (3), we expand amplitude (9) into 
a series for small non-sphericity parameters a A.• 
which are limited by the linear approximation. 
According to reference 5 this can be done if 

OC),kRO 'Z:: I. (11) 

As a result of this expansion the integrals appear 
in the form 

27t 

~ ~ dcp exp i (p.'f'- z cos cp) = i-"' J" (z), 
0 

which reduce to Bessel functions. Thus we obtain 
the following expression for the scattering ampli­
tude of charged particles from a fixed nucleus 
(A. = 2): 

00 

f (Q, <o) = + (kR)2(Hi~) {- (kR0)-2<r+<~) ~ xH-2i·~ Jo (x) dx} 
kRB 

1 00 
' . " . l 

>~ ~ y ).lJ. (p,', 0) d:1.' (kRB)-2'" \ x-r+"'" J" (x) dx l . (12) 
-1 kRO 

Using the formula in reference 6 
00 

~x-2V+!-t-1J.,(x) dx = 2-2V+f.t-1 r (p.- Y)/r (I + '1), (13) 
0 

we obtain from (12) the following expression for 
the elastic scattering amplitude 

<Yoof (Q, <u) Yuo> = f Eo (0) 

kR6 

+ + (kR)2CH-i11l (kR0)-2<r+ir,) ~ xr+2i11 J o (x) dx, (14) 
0 

where fEo(fJ) is the scattering amplitude in the 
field Z Z' e2 /r: 

z·r, ( . a ) r (1 , ir,l 
fEu(O) =-7Ji2exp -2tYjln 2 1'('1-ir,)' (15) 

Thus the amplitude of elastic scattering consists 
of the amplitude of elastic scattering in the electric 
field of the nucleus and the nuclear part of the 
elastic scattering amplitude. 

In the linear approximation for a small non­
sphericity parameter O!A_ the angular distributions 
for elastic scattering on spherical4 and non-spheri­
cal nuclei are the same. 

The amplitude of inelastic scattering, as a re­
sult of which the nucleus transfers from the ground 
state to the rotational state Y A./1 (w) has the follow­
ing matrix element: 

1 00 

+ . _3_ \ y ( ' 0) d:J.' (kR0)-2i1) \ x-H2i·~ J (x) dx~J. lTJ 2t. + 1 ) ).f.< fL , r .\ ~' 
-1 kRO 

(16) 

The integral in this formula can be put in the form 
0() 0() 

ff(x) dx - Jf(x)dx after which the first integral is 
0 0 
done with the help of formula (13). We obtain 

<Y~~-' f (il, w) Yoo) 

= (Y;_.,f E(£2., C.J) Yoo> -:~ <Y~I.Lf n (Q., w) Yo0). (17) 
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The first term in the right hand part of this for­
mula as shown in the Appendix is the amplitude of 
electric quadrupole excitation. According to for­
mulas (13) and (16) it looks like 

(Y;,fl. (w) f E (Q, w) Yoo) 

= OIL+ce-ifl. m (' ~)'I• a/. kR2 _1) (1 + i'Y)) 
.. . 2 (2), . .L 1)''• 1 + 1)2 

( . o) r (1 + i11) 
xexp _-2t7Jln 2 I'(t-i'Y)). (18) 

The second term of formula (1 7) , which can be 
called the nuclear part of the inelastic scattering 
amplitude, can be described by the expression 

(Y~p.((t))fn(D, t•>)Yoo) = e-il'¢iP.+l (kR):(l-j-i·~) a~.. 
(2), + 1)'/, 

kR6 

- o . ~ · (kR0)-2i~ I x-1+2i~ J (x) dx]. 
P.o:2 ~/.. + 1 t"fj ) 2 

0 

With 7J = 0 formula (19) describes the inelastic 
scattering of neutrons. 7 

3. SCATTERING CROSS SECTION 

(19) 

The differential cross section for inelastic 
scattering of charged particles with excitation of 
the first rotational level of the even-odd nucleus 
is determined by the square of the absolute value 
of the amplitude (17): 

:;), (B) = crn (0) + :;nl. (0) + crintA (0); ), = 2; 

2 (kR) 4 31)2 • 

cr E), (0) = IX). k• ( ~), + 1 )3 1 + 1)2 • 

Jni. (0) =Ct.~ k 2 (~~.RJ.4 1 ) H [J~ (kRO) + 3J; (kRO)] 

+ 2i.5: 1 [:n2: 1 iF (kRO) 1
2 + J2 (kRfJ) Im F (kRO)]}; 

2 (kR) 4 611 { . 
crint ), (0) = - lXI. k• (2i. + 1)2 1 + 112 ('YJ sm X 

+ cos x) Zi-2~ 1 ReF (kRO) 

-!- ('YJ cos z - sin x) ~ 2 ),2~ 1 Im F (kRO) + ~ J 2 (kRO)J}· 

(20) 

Here 
(I 

F (a) = a-2i~ ~ x-1+2i" J 2 (x) dx; 
0 

kRO x. = 27J Jn 2 - 23, o = argr (I+ i7J). 

Thus, the cross section for inelastic scattering 
a--; .. (8) is the sum of the cross section for coulomb 
excitation O'E;>..(B), the nuclear part of the inelastic 
scattering cross section O'n;>..(B) and the interfer-

ence term O'intA(8). At sufficiently great magni­
tudes of Z Z' all these functions are of the first 
order of magnitude with the exception of the inter­
ference term which, as can be seen from formula 
(20), can be disregarded in the region of very small 
scattering angles kR8 « 1. We should also men­
tion that the form of the angular distribution of in­
elastically scattered particles (20), is not depend­
ent on the nonsphericity parameter 0!;>.. of the nu­
cleus and is determined by the parameters kR and 
7J. With 7J = 0 formula (2) describes the angular 
distribution of neutrons scattering inelastically 
with excitation of the first collective level of the 
even-odd nucleus: 1 

(0)- :~ (kRi· J 2 (kRO) I 3 2 kRO (21 crni. · -~X; 'tk" (2i .. :.. l) [ o ·;- Je ( )], ) 

assuming that kR » 1 and a:>.. kR8 « 1. 
The angular distribution of particles scattering 

inelastically with excitation of the first rotational 
level of the even-odd nucleus as shown in reference 
5, under corresponding conditions, coincides with 
the angular distribution of particles scattering 
with excitation of the first vibrational level. 

4. RESULTS OF CALCULATION AND COMPARI­
SON WITH EXPERIMENTAL DATA 

The complex function F(a) in formula (20) for 
angular distributions, on the basis of the known 
relationship 

J2 (x) = (_::. \2 ~ amJ2-j-m (a) (1- x• )m 
a) LJ m! 2m a• 

m=o 

and the characteristics of r functions, can be rep­
resented in the form 

oo am J (a) m 1 . 

F (a)'=,~, 2~~~ /I(;~ 1)~:~.. (22) 

For instance, with a :::; 8, for calculating the real 
and imaginary part of the function F(a) with good 
accuracy it is sufficient to use the first eight 
terms of sum (22). 

The angular distributions of charged particles 
from inelastic scattering on non-spherical nuclei 
calculated according to formulas (20) and (22) are 
shown in Figs. 1-3. A comparison of theoretical 
and experimental8 •9 data for angular distributions 
of protons and alpha-particles inelastically scat­
tered by the nucleus Mg!~ (Figs. 1 and 2) makes it 
possible to evaluate the non-sphericity parameter 
of this nucleus: a 2 = 0.17 to 0.20. 

In conclusion I wish to thank L. D. Landau, B. 
T. Genikman, K. A. Ter-Martirosyan for their 
fruitful advice on this work and also T. V. Novikov 
and A. V. Cherenkov who did the numerical cal­
culations. 
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FIG. 1. Functions a 2 (0), aE/0), aint 2(0), an2 (0) in units 
o:22 (kR)4 /Sk2 , describing the angular distribution of 31.5-Mev 
alpha particles inelastically scattered from M~~ with excita­
tion of its first collective level. The calculation was done 
with R = 4.9 x 10-13 em (curve 2) and R = 5.3 x 10-13 em 
(curve 1). Small circles indicate experimental data. • Compar­
ison of theoretical and experimental data gives the value of 
the parameter of nonsphericity of the nucleus Mg~~: o: 2 = 0.17 
to 0.20 
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FIG. 2. Functions a2 (0), aE 2 (0), aint 2 (0), an2 (8) in 
units o: ~ (kR)' /5k2 , describing the angular distribution of 18-
Mev protons (p) inelastically scattered from Mg~~ with excita­
tion of its first collective level. For comparison the angular 
distribution of inelastically scattering neutrons a2 (0) are 
presented (n) in the same units. The calculation was done 
with R = 4. 7 x 10-•• em. The small circles show experimental 
data! The discrepancy between theoretical and experimental 
data at e < 20° can possibly be explained by the fact that 
we were unable to separate experimentally the group of elas­
tically scattered protons from the inelastically scattered 
group. Therefore the comparison of experimental and theoret­
ical data with e = 30 to 50° gives a value of the parameter of 
non-sphericity of the nucleus Mg~~. o: 2 = 0.31, which exceeds 
o: 2 obtained from an analysis of experiments on the scattering 
of alpha particles (see Fig. 1). 

FIG. 3. Graphs of the 
same quantities as in Fig. 
2, for the case of inelas­
tic scattering of protons 
and neutrons, with ener­
gies of 20 Mev (1) and 30 
Mev (2), from the nucleus 
Gd~~0 : R = 1.3 X 10-13 A'l. 
em. 

APPENDIX 
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We shall show that formula (18) determines the 
amplitude of electric quadrupole excitation for 
small scattering angles e « 1 in the adiabatic 
approximation when the corresponding parameter10 

is ~ = 7JL\E/2E « 1. Actually, if the condition 
a 211 « 1 is fulfilled 5 then the amplitude of scat­
tering in the electrical field of the nucleus (5) in 
the first approximation of the theory of excitation 
can be presented in the form (A. = 2): 

f£(0., w) = f£0 (9) 

where ki> kf are the wave vectors of the incident 
and scattered particle; lk >is the Coulomb wave 
function. From (1.1) we obtain the following ex­
pression for the amplitude of inelastic scattering 
in the adiabatic approximation: 

= - e-2ifl.<l> 6a~. "flkR'- 'I <kf j r-'--1 y A fl. (.!..)\ j k,.). (1.2) 
(2).. + 1)2 (47t) ' r 

Selecting ki as a polar axis and using expansions 
of Coulomb functions lk > in spherical functions we 
have (see reference 10, page 449): 

= ( _±_)'I• V i 1i -lj i<S;+Sj) (21 · + l) (21 -+- l) 
\2).. + 1 .L.J ' f ' 

l; lf 

l.o Afl. [ (lf -!-')! ]'/• fl. -:>.-1 
XCt;oz10Ct;oz1 fl. (lt + !-')! Pt1 (cosB) Mz; t1 , 

where MzJf-1 is the radial matrix element 

cfimilfmf are the Clebsh-Gordan coefficients, 

(1.3) 
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&i = argr(l + Zi + i17). 
The large magnitudes of h. lf play a basic role 

in sum (1.3) when we observe scattering through 
small angles. Therefore, independently of the mag­
nitude of 11 (according to reference 10, page 456) 
the radial matrix elements are 

e-2 
,VIz:~-1 1 = --~. hm (%, 0), 

' 4'1) 

il 'IJ 
tan 2 =T· 

(1.4) 

Where Ir.. m (-8, ~) are the orbital integrals of the 
theory of coulomb excitation (reference 10, page 
482) where in this case the parameter of adiabati­
city is ~ = 0. In addition we can use the following 
asymptotic characteristics of the r function, spher­
ical functions and Clebsh-Gordan coefficients 10• 11 : 

r (1/-p.)! ]'/• !.t 
i(S;+Sj) = z2i71; • (If+ p.)! Ptf (cos 6) = J!.t (!6), 

(1.5) 

Where Dtm(cp 1, -81> cp 2) are generalized spherical 
functions .11 Substituting (1.4) and (1.5) into (1.3) 
and changing the double sum over Zi, lf to the in­
tegral over l = (lf + Zi)/2 and changing the sum 
over m = lf - Zi we obtain 

<k1 I r-'--1Y '-~-' ( 7) I k,) = (- 1)~-'e'~-'1> k~~2 [rt (2),. + 1 )]'!.. 

X l_J i-m D:;,. ( 0, T , 0) D~m ( 0, T , 0 J 
m 

00 

x ~ xH2i71 J ~-' (x6) hm (%, 0) dx, (1.6) 
0 

where tan(-8/2) = 11/x. Since in the integral over 
X, X - 211/8 with 8 « 1 plays an important role, 
the function x"-Ir..m(-8, 0) can be expanded in a 
series for small 11/x. According to reference 10 
(page 482) with A. = 2 we have 

2 I I (l 0) 2 2 X 2±21.'1T, -= 3'1i, 

By applying the well-known values of the functions 11 

D~ m (0, rr /2, 0) we obtain from (1.6) and (13) for­
mula (18) for the amplitude of electric quadrupole 
excitation with scattering through small angles in 
adiabatic approximation. 
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