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The angular distribution of the radiation produced by a charged particle which passes 
through the interface between a vacuum and an isotropic ferrite is considered; the case 
of a vacuum and a crystalline dielectric is also considered. It is shown that the radia­
tion depends on the sign of the group velocity. The transition radiation is considered in 
connection with the characteristics of Cerenkov radiation in crystals and in isotropic 
media in the frequency region characterized by negative group velocities. The "inverse" 
Doppler effect is considered. 

1. INTRODUCTION 

TRANSITION radiation of a charged particle which 
moves perpendicularly to the boundary between two 
media with different dielectric constants was first 
considered by Ginzburg and Frank.1 The problem 
has also been treated by other methods in later 
work.2- 5 

In the present paper we consider transition ra­
diation, taking account of the magnetic permeabil­
ity. It is shown that this radiation is affected sig­
nificantly by the sign of the group velocity. We 
also consider transition radiation in connection 
with the characteristics of Cerenkov radiation 
in frequency regions associated with negative 
group velocities. In these regions the solutions 
of Maxwell's equations appear as advanced poten­
tials which carry energy from the radiator; it is 
found that the Cerenkov ray forms an obtuse angle 
with the direction of motion of the particle. In this 
case a sharp intensity peak (in the transition radi­
ation) due to the generation of Cerenkov radiation 
in the medium should be observed in the vacuum if 
the particle moves from vacuum into the medium. 

We also consider the radiation of a charged par­
ticle which moves perpendicularly to the boundary 
between a vacuum and a uniaxial crystalline die­
lectric. This problem is of interest in connection 
with Cerenkov radiation in crystals because in cer­
tain frequency regions the radiation is described by 
an advanced potential characterized by a phase 
which moves along the particle trajectory. There 
is also a frequency region in which the Cerenkov 
ray forms an obtuse angle with the direction of 
motion of the charged particle (cf. reference 6). 

In an isotropic medium these characteristics 

of the Cerenkov radiation are found in a single 
frequency region - the region in which the group 
velocity is negative. 

In conclusion we consider the so-called "in­
verse" Doppler effect - low-frequency radiation 
in the forward direction. From the inverse Dop­
pler effect it follows that in the case of a source 
of zero frequency which moves with a velocity 
greater than the phase velocity of light the Ceren­
kov radiation which is produced should form an 
obtuse angle with respect to the direction of 
motion. 

2. RADIATION OF A CHARGED PARTICLE THAT 
PASSES THROUGH THE BOUNDARY BETWEEN 
A VACUUM AND AN ISOTROPIC FERRITE 

The problem is solved conveniently in cylin­
drical coordinates. Taking the z axis in the 
direction of the particle velocity v we write the 
current density, as in reference 3, in the following 
form: 
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Introducing the Hertz vector in accordance with the 
expression 

we obtain the following solution for Maxwell's 
equations: 
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where the last two terms satisfy the source free 
equation and are determined from the boundary 
conditions. The Hertz vector has only one non­
vanishing component; this is along the z axis 
(in Eq. (3) we have dropped the z subscript). 

We shall assume that the boundary coincides 
with the plane z = 0 and that the ferrite occupies 
the semi-space z < 0. In the vacuum region 
( z > 0) the solution is expressed by Eq. (3) if we 
take E: = 1 and 11- = 1. If 

to satisfy the requirement that the solution be 
finite at infinity we take Bf = 0 and Av = 0. 

Using the boundary conditions* 

t anr an v 

:-:~- 7Jz iJz 
(4) 

we find the components Af and Bv which differ 
from zero. 

In what follows we shall be interested in the ra­
diation energy in the vacuum region. The radiation 
field in the vacuum is completely described by the 
term which contains Bv, which does not become 
infinite if the ferrite has losses. In this case the 
integration over a can be carried out by the 
method of stationary phase. The important con­
tribution in the integral is due to a small region 
of order -J w/ cR close to a = ( w/ c) sin J-, 
where R is the distance from the origin of coor­
dinates to the point of observation. Hence, at large 
distances from the origin integration over a 
means approximately that we replace a by 
( w/ c) sin J-. Carrying out this integration and 
computing the Poynting vector flux through an iso­
lated hemisphere we obtain the vacuum radiation 
energy for a charged particle which moves from 
the ferrite into the vacuum: 

(5) 

where f3 = v /c is the ratio of the particle velocity 
to the velocity of light in vacuum and J- is the 
angle between the z axis and the direction of 
observation. 

In the case in which the particle moves from 
vacuum into the ferrite, the vacuum radiation en­
ergy is obtained from Eq. (5) by replacing f3 by 
- {3. When fJ. = 1, Eq. (5) becomes the equation 

*The subscript "f" corresponds to quantities taken in the 
region z < 0, occupied by the ferrite, while the subscript "v" 
corresponds to vacuum quantities (z > 0). 

which has been obtained earlier (cf. references 
1- 5). Equation (5) describes the entire energy 
which appears in the vacuum region, including the 
Cerenkov radiation generated in the medium.* 

The integration over a (to within a numerical 
factor) leads to the replacement of a by (w/c) sin J-. 
Whence it follows that the inequality which we have 
taken above (Re -J a2- E:JJ.w2/c2 > 0) corresponds 
to the following inequality: 

(6) 

Equation (5), which is written under the assumption 
that (6) holds, is valid over the entire frequency 
range, including the range in which the group ve­
locity is negative. 

We may note that in principle the group veloc­
ity in a ferrite (E ;;"' 1, fJ. ;;"' 1) can be negative.t 
In order to show this, we substitute a plane wave 
in Maxwell's equations ( E, H "' exp [ i ( wt - kr)]) 
in which case the following vector relation holds: 

where S is the Poynting vector. Undamped elec­
tromagnetic waves can exist both for E > 0, fJ. > 0 
as well as for E: < 0, fJ. < 0 since the index of re­
fraction n = -fEiJ, is a real quantity in both of 
these cases. It is apparent from the last relation 
that in the first case the Poynting vector coincides 
in direction with the wave vector k; in the second 
case S and k point in opposite directions, i.e., 
the group velocity is negative. In the frequency 
region in which the following relation is not sat­
isfied: Re ( Bw/Bk) » Im ( Bw/Bk) the concept of 
group velocity has no meaning. In this case the 
term "positive (negative) group velocity" is no 
longer meaningful in the above sense. 

In the frequency region in which the group ve-

*In this connection we wish to point out an error in the in­
terpretation of the corresponding result in reference 4, where 
an analysis is made of the radiation of a charged particle 
which moves through a vacuum-dielectric boundary and it is 
asserted that the Cerenkov waves do not make a contribution 
in the first integral in Eq. (27). At the large distances for 
which the first integral in Eq. (27) is computed in reference 4 
the cylindrical Cerenkov wave is transformed into a spherical 
wave and the second integral can be neglected. To convince 
ourselves of this it is only necessary to take account of the 
fact that the residue at the pole in the integration over x in 
Eq. (23) is to be taken only when the pole in the complex 
plane lies between the real axis and the line of steepest de­
scent (if there is damping, in Eq. (27) of reference 4 the quan­
tity £ should be used instead of £ '. 

tThe group velocity can also be negative in a medium with 
spatial dispersion (cf. reference 7). The features associated 
with a negative group velocity which are being considered in 
the present paper are quite general. 
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locity is negative the solution is given by advanced 
potentials, with phases which do not move away 
from the radiator but approach it. In this case 
one expects peculiar features for the radiation in 
moving systems. In the figure is shown a diagram 
of the propagation of waves which are excited by 
a uniformly moving particle which interacts with 
the electromagnetic field. If the velocity of the 
particle exceeds the phase velocity of light (n,B 
> 1) then in the direction given by J, which sat­
isfies the relation n,B cos J = 1, all the elemen­
tary waves are propagated in the same phase. The 
Cerenkov waves formed in this way exhibit a sur­
face of uniform phase in the form of a cone with the 
vertex in the forward direction. The phase ve­
locity forms an acute angle J with the direction 
of motion of the particle. However, the energy 
flow is in the opposite direction. As a result a 
narrow peak in the transition radiation intensity, 
due to the Cerenkov radiation, should be observed 
in vacuum when the particle moves from vacuum 
into the medium. One is easily convinced of this 
if one introduces damping E = E' - iE", J-t = J-t' - iJJ-", 
where E" > 0 and JJ-" > 0. In this case, in the re­
gion of negative group velocity (6) corresponds to 
the inequality Re -J EJ-t - sin2 J < 0. Taking account 
of this situation and replacing ,B by - ,B we see 
that Eq. (5) yields a narrow maximum (,82 ( EJJ-
- sin2 Jc) = 1) in the direction of the refracted 
Cerenkov angle. Under these conditions, in the 
vacuum at small distances from the medium there 
will be a converging cylindrical Cerenkov wave 
which, after intersecting the normal to the boundary, 
diverges and fills the inner part of the Cerenkov 
cone. One is easily convinced of this result from 
an analysis of the diffraction of the plane waves at 
the boundary. 

In actual ferrites there is no frequency region 
in which E < 0 and J-t < 0; however these mate­
rials do not represent the only possibility. As we 
have noted above, the group velocity can be nega­
tive in a medium characterized by spatial disper­
sion.* 

3. RADIATION OF A CHARGED PARTICLE 
WHICH MOVES THROUGH A VACUUM­
CRYSTAL BOUNDARY 

As has been indicated in reference 6, the Ceren­
kov ray generated in a crystalline dielectric may 

*In reference !s the Cerenkov radiation has been consid­
ered for isotropic gyrotropic media in which spatial dispersion 
is taken into account. The energy in reference 8 which corre­
sponds to the Cerenkov radiation in the region of negative 
group velocity moves at an obtuse angle with respect to the 
direction of motion of the particle. 

form an obtuse angle with the direction of motion 
of the charged particle. It is of interest to con­
sider the radiation of a point charge which passes 
through a vacuum -crystal boundary in connection 
with this feature of Cerenkov radiation. 

We take the velocity to be along the z axis and 
introduce the Hertz vector: 

H"' = i '-"- curl n"" (7) c 

for a uniaxial crystal with axis in the z direction 
we obtain the following solution for Maxwell's equa­
tions: 

n= 

(8) 

where Eo and Ee are the transverse (to the crys­
tal axis) and longitudinal components of the dielec­
tric primitivity tensor. The Hertz vector has one 
non -vanishing component (along the z -axis ) so 
that we drop the index (also the vector nature of 
II). 

We assume that the crystal fills the half-space 
z < 0 and that the region for which z > 0 is a 
vacuum. Assuming that 

(9) 

we determine the solution completely by requiring 
that the solution be finite at infinity (the vacuum 
wave diverges from the origin), using the conti­
nuity conditions on the tangential components of 
the electric and magnetic fields; these are equiva­
lent to the relations 

where the subscript "c" denotes quantities taken 
in the crystal. 

Carrying out the calculations as in the preced­
ing section we obtain the vacuum radiation energy 
for a charged particle which moves from the crys­
tal into the vacuum: 
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The vacuum radiation energy for the case of 
motion of a particle from vacuum into a crystal 
is obtained from Eq. (10) by replacing {3 by -{3. 

When Eo = Ee = 1 the quantity W vanishes as is 
to be expected and when Eo= Ee = E Eq. (10) gives 
the familiar result (cf. references 1- 5). 

In the integration over a, as in the preceding 
section, the important region is the small region 
in the vicinity of the point of stationary phase and 

in integrating over a we replace a by ~ sin J.. 
c 

Hence the relation in (9) becomes: 

Im V Eo- (Eo/Ee) sm" <\t < 0. (11) 

In Eq. (10) it is assumed that this inequality is sat­
isfied. 

As has already been shown in reference 6, the 
Cerenkov ray forms an obtuse angle in the fre­
quency region in which Eo-< 0 and Ee > 0. By 
introducing a small damping factor ( Eo,e = Eo,e 
- iEo,e• Eo,e > o) we can show that when Eo < o 
and Ee > 0 the following inequality is satisfied 

(12) 

where J. is the refracted Cerenkov angle which, 
as has been shown, satisfies the equation 

<o ) >~ ( s0 - -€, sin2 \1, = l. (13) 

Making use of Eq. (12) and replacing {3 by - {3, 
from Eq. (10) we can show that in the direction of 
the refracted Cerenkov ray there should be a sharp 
radiation maximum because in this frequency re­
gion the Cerenkov ray forms an obtuse angle with 
the direction of motion. 

4. "INVERSE" DOPPLER EFFECT 

In the frequency region in which the Cerenkov 
ray forms an obtuse angle with the direction of 
motion one also expects peculiar properties for 
the radiation of a moving oscillator. This is ap­
parent from the Doppler formula 

) C•ltJ - k·v I = C•>o. (14) 

where w0 is the source frequency in the rest sys­
tem, v is the velocity, k is the wave vector: 
k = WJ.n (WJ., J.)/c (J. is the angle between the 
vectors k and v). It is apparent from Eq. (14) 
that in the frequency region in which the projec­
tions of the wave vector and the group velocity on 
the direction of motion have different signs lower 
frequencies are radiated in the forward direction 
("inverse" Doppler effect).* From the "inverse" 
Doppler effect it follows that for zero frequency 
of a source which moves with a velocity exceed­
ing the phase velocity of light the Cerenkov radi­
ation forms an obtuse angle with the direction of 
motion.t 

In conclusion the author wishes to thank V. L. 
Ginzburg for a number of valuable comments and 
a discussion of these results. 
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*The "inverse" Doppler effect in anisotropic gyrotropic 
media has been considered in rpference 9. 

tThe role of the group velocity in the radiation of a moving 
oscillator has been discussed by Frank,lO 


