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A relativistically invariant expression for the probability amplitude for three-photon anni­
hilation of positronium is obtained by the summation of an infinite number of diagrams of 
a definite class. The probability of three-photon annihilation of positronium in the P state 
is calculated in the nonrelativistic limit, and the selection rules for this process are found. 

DEPENDING on the charge parity of a state of 
positronium, it can decay into two or three photons 
(a larger number of photons is less probable). 
Two-photon annihilation of positronium in the S 
state has been dealt with in a calculation by Porn­
eranchuk, 1 and three -photon annihilation of posi­
tronium in the S state has been considered in a 
paper by Ore and Powell. 2 The methods given in 
these papers, however, cannot be applied to the 
calculation of the probability of annihilation of 
positronium in excited states. It has been sug­
gested by the writer3 that the amplitude for anni­
hilation of positronium be found by summation of 
an infinite number of Feynman diagrams; this 
makes it possible to calculate the probability for 
annihilation of positronium in any excited state. 
In the paper referred to the probability for two­
photon annihilation of positronium in the P state 
was calculated. In the present communication the 
technique of summation of diagrams is applied to 
the problem of the three-photon annihilation of 
positronium. 

l. THE PROBABILITY AMPLITUDE FOR THREE­
PHOTON ANNIHILATION OF POSITRONIUM 

The diagram that describes three-photon anni­
hilation of free particles is shown in Fig. 1.* To 
get the probability amplitude for three-photon 
annihilation of bound particles, we adjoin to the 
irreducible diagram (Fig. 1) all the reducible 
diagrams of the "ladder type" (Fig. 2), which 
describe the interaction of the particles before 
the annihilation. We get as the result the ampli­
tude for three-photon annihilation of an interact­
ing electron and positron (which can also be in 

*In Figs. 1 and 2 the similar diagrams that differ from 
each other and that shown by permutations of the three pho­
tons k,, k2 , k, are omitted. 
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a bound state) in the following form (cf. refer­
ence 3): 

A = - ie3 ~ <Dv,v,v, (x2xx1) (C'Iv,K (x2- x) 'lv,K (x- x1) 'lv,)p,p, 

X 'l"p,p, (x1x2) d4xd4x1d4x 2 • (1) 

Here >¥ (x1x2 ) is the wave function of the inter­
acting electron and positron, which satisfies the 
Bethe-Salpeter equation,4 and 

<llv,v,v, (x2xxr) = 21t V21t I W1W2<1Ja 

X [ l1vJ2v,lav, exp i (k1X2 + k2X + kaxl) + · · .] (2) 

is the symmetrized function of the photons with 
frequencies w1, w2, w3, momenta kt, k2, k3 and 
polarizations 11, 12, 13• In the expression (2), 
and also in the subsequent calculations, the series 
of dots corresponds to the similar terms with all 
possible permutations of the photons. Further­
more C = a 2, Yo= {3, y 1,2,3 = {3a1,2,3, and K(x) 
is the electron Green's function. 5 Throughout we 
have set ti = c = 1, and have adopted the follow­
ing rule of summation over vector indices: 

The expression (1) gives the first nonvanishing 
contribution for the process in question. If we take 
into account radiative corrections, then every ma­
trix y in Eq. (1) is replaced by a vertex operator 
r, and every Green's function K is replaced by 
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G, where r and G include the radiative correc­
tions. 6 In dealing with the radiative corrections to 
the amplitude (1) we must add in on an equal basis 
with diagrams like Fig. 2 diagrams that describe 
the interaction of the electron and positron asso­
ciated with their virtual annihilation. 3 Then the 
wave function '11 (x1, x2) involved in Eq. (1) will 
be the solution of a Bethe-Salpeter type equation 
in which along with the ordinary interaction there 

where 1/J (p) is the positronium wave function in 
the relative-momentum space, K is the total mo­
mentum of the positronium atom, m is the mass 
of the electron, and for any vector a we write 
a = avl'v· 

In the calculation of the amplitude (3) we make 
use of the smallness of the velocity v of the rela­
tive motion of the particles in the positronium 
atom ( v is of the order e2 ) and shall hereafter 
neglect all terms of order v2 and higher. For 
convenience we go over in Eq. (3) from the ma­
trices 'Y to the two-rowed ( 2 x 2 ) Pauli matrices 
u, and regard as nonvanishing only those of the 
small components of the wave function 1/J (p) that 
are of the order of magnitude v. Then in the co­
ordinate system of the center of mass of the posi­
tronium atom (Ko =2m- E, K = 0) we get 

A=~~~::::{~ [(Po+ wa + -} E- mY- (P + k3 ) 2 - m2r1 

X [(Po- WI-+ E +mY- (p- kl) 2 - m2r1 

X ( Sp 02 [(p~ + Po ( Wa- W1) - w 3wl) l~fS1 

+I~ (p + k~) I~ (p -- k1 ) ld 4L(p) + m Sp o2 [I~ (p + k3)l2l1 

+ IaJ2 (p- k1) JJJ (cjiM' (p) -;- 4M' (p)) 

+ Sp 02 [(Po- W1 + m) fa (p + ka) l2l1 

+(Po + Wa- m) lal2 (p- k1) ld 

X (4M' (p)- 4M' (p))} d4p+ ... } o (K- k1- k2- ka)· (4) 

Here 1/JL(p) is the large two-rowed component of 
the wave function 1/J (p ), and 1/JMl(p) and I/JM2(p) 
are the small (order of magnitude v) two-rowed 
components of the wave function 1/J (p ), which in 
the mixed representation for t > 0 has the follow­
ing form:8 

4 (p,t) = (<jiL(p,l) <JiM' (p,l)) 
<jJM1 (p,l) 0 

= (A <t>(P) -<t>(P)Pr / 2m)exp[- i(; +2~)t]. (5) 
,p.,(p)/2m 0 

is also the specific exchange interaction associ­
ated with the virtual annihilation of the electron 
and positron. 7 •6 

2. THE NONRELATIVISTIC APPROXIMATION 
FOR THE AMPLITUDE 

In relative-momentum variables p the ampli­
tude (1) can be rewritten in the form 

where the index T means transposition. For 
t < 0 the sign of the exponent in Eq. (5) is re­
versed. E is the binding energy of the particles 
in the positronium atom, and for any three-dimen­
sional vector q we have used throughout the no­
tation q = (q · u) =~am. The nonrelativistic 
two-rowed function cp (p) in Eq. (5) satisfies the 
Schrodinger equation written for the electron and 
positron, and also is an eigenfunction of the oper­
ators for the total angular momentum of the sys­
tem and for an angular-momentum component. 

It is easy to see that in the case of the P state 
of positronium the functions 1/JL(p ), 1/JMl(p ), and 
I/JM2(p) make contributions of the same order of 
magnitude to the amplitude (4), whereas in the 
case of the S state the functions I/JM1 (p ) and 
I/JM2(p) can be neglected. If in calculating the 
annihilation of positronium in the S and P states 
we confine ourselves to the first nonvanishing con­
tributions, then in integrating over the variable Po 
we can set Po = 0 in all the coefficients of 1/JL(p ), 
1/JMl(p ), and I/JM2(p) in the integral (4) (cf., e.g., 
reference 8). Then the remaining integral over 
the relative momentum p will contain the non­
relativistic two-rowed positronium wave function 
cp (p ). Since cp (p) has appreciable nonvanishing 
values in the region of small momenta, I p/m I = 
v « 1, the terms in Eq. (4) that contain p21fJL, 
f>I/JM1, and f>I/JM2 are beyond the limits chosen 
for the accuracy of the calculation. Thus we get 
for the amplitude (4) 

A - 2(pk") ·- p2 ·-mEl-' 

1~t<3J~k~Clcp(pJ+2msp""<Ci>f)<]C -1"k2 l'"i>Cl·;;(pJ 

m Sp "" (1,,1" k), - (, k,i~C )(p:;; (p) :;; (p) P1) 

Sp;"(l,.l{3(C(I•J1 ---m) («la m)iJ){,CJ(p:y(p) 

- ;::(p)p1)Jd'p ... .};,(K 1<, il"-k"). (6) 

In the integral (6) we have kept the small quan-
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tity E in the denominator to avoid later diverg­
ences in the integration over the photon energies. 
The further calculations are considerably simpli­
fied if we take the photons to be circularly polar­
ized. Then for the polarization vector l of each 
photon k = nw we have 

].o (~ i/.[nx-.:1). V2, i ..•. ~-+ I, 

~X [n X~] n, n I ~- il {7) 

Setting ep(x) = <Psz<Pnonrel(X), where <I>sz is the 
spin function and 1/Jnonrel ( x) is the coordinate­
space nonrelativistic wave function of the positro­
nium atom, we get for the amplitude for annihila­
tion of positronium, for example in the S state: 

A= 

;( (Sp ~2:Jm<Dsz) ~nonrel (0) 0 (K ·-· kl ·- k2 --- ks), (8) 

where the notation c.p. in the curly brackets means 
the similar terms obtained by cyclic permutations 
of the indices 1, 2, 3. The expression (8) leads to 

The terms in the amplitude (10) can be divided into 
three groups, each of which involves two photons 
symmetrically and differs from the other two 
groups by cyclic permutation of the three photons 
(cf. Figs. 1 and 2). If we examine all the terms of 
one such group it is easily seen that the function 
ep {p) occurring in the amplitude (10) must be anti­
symmetric in the spin indices. Consequently, the 
functions pep ( p ) and - ep ( p ) p T (the small com­
ponents of the wave function (5)) make the same 
contribution to the amplitude {10); for example, 

This means that in calculating the value of the ex­
pression (10) we can replace the expression pep {p) 
- ep {p) p T by the factor 2pep (p) or the factor 
-2ep{p)pT, and the expression pep{p) + ep{p)pT 
is to be set equal to zero. We get 

A ___ ie3 (2rcL"'. Sp crAl \ ((i 1 + f-2) [1- (n 1n2 ) I (l 3p) ' 
- J/ t~W:.wJ-----------;;;- v \----- L.mw3 -i- tnE--i~pz:-- -~- c.p.) 

(12) 

the well known value for the probability W of three­
photon annihilation of orthopositronium in the S 
state:2 

W ~- 2 (,z ___ 9) (e2)6m ~-= 0.72 ·10' sec-1 {9) 
~nn3 n3 ' 

where n is the principal quantum number fixing 
the energy state of the positronium atom. For 
parapositronium in the S state the probability of 
three-photon annihilation is zero according to 
Eq. (8), in agreement with the law of conserva­
tion of charge parity. In the writing of formulas 
(9) and (13) for the probability of three-photon 
annihilation of positronium an additional factor 
of Y6 is introduced to allow for the identity of 
states of the system that differ only by permuta­
tion of the momenta of the photons. 

3. ANNIHILATION IN THE P STATE 

In the case of the P state the wave function of 
the positronium atom is odd, ep (-p) = - ep (p ), 
and by Eqs. (6) and {7) the amplitude for three­
photon annihilation takes the form 

(10) 

Here ep (p) = <I>l/Jnonrel {p ), where <I> is the spin 
function and 1/Jnonrel (p) is the nonrelativistic co­
ordinate wave function for positronium in the P 
state. In Eq. (12) terms not containing w in the 
denominator have been dropped, since they make 
only a small contribution (see below). In Eq. (12) 
account has also been taken of the fact that if the 
energy of one of the photons goes to zero, w- 0, 
then for each of the other two photons w- m. 

The spin function .P appearing in Eqs. (12) 
and (10) is antisymmetric. Therefore the ampli­
tude for three-photon annihilation of positronium 
in the P state is different from zero only for 
states with total spin s = 0 (parapositronium ). 
On the other hand, for total spin s = 1 ( ortho­
positronium) the probability of three-photon 
annihilation in the P state is zero. This selection 
rule is an expression of the law of conservation of 
charge parity. 

According to Eq. (12) the probability W of 
three-photon annihilation of parapositronium in 
the P state can be written in the form 
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;<\ m2 [1--=Jn_~n.")]~,w,.o (2t~- E --~-' :--- w,- w") dQld£22d<uldw2, 
.l ( ~ 2mw3 -'- mE V mE) wa 

(13) 

where the summation over the index M comes 
from the averaging over the three states of para­
positronium with the orbital angular momentum 
l = 1. In the expression (13) we have kept only 
terms in which the large factor ln (2m/E) » 1 
appears on integration over the energies of the 
photons. For the terms dropped in Eq. (13) the 
integral over the photon energies is not of an order 
larger than unity. 

In Eq. (13) it is convenient to integrate first 
over the angles, using the fact that 

The integration over the angles removes the o 
function, and the expression (13) takes the form 

(14) 

The region of variation of the independent variables 
of integration w1 and w2 in Eq. (15) is limited by 
the laws of conservation of energy and momentum. 
Since two quanta can simultaneously have the en­
ergy m- E/2, the upper limit of the integration 
over w1 and w2 is m- E/2. If w1 < m- E/2, 
the smallest value for w2 is given by the condi­
tion w3 = m- E/2, i.e., it is w2 = m- w1 - E/2. 
The integral over w1 and w2 in Eq. (15) is equal 
to ln ( 2m/E ) » 1, if we drop a term of value 
about unity. 

Thus the probability W of three-photon anni­
hilation of parapositronium in the P state is 

(16) 

In particular, if the principal quantum number n 
for parapositronium in the P state takes its small­
est value n = 2, we have 

I ··· (25 ) 1 . -1 lV = "~-,5 11n 4 (e2 ) 8m = 0.3 .J 03 sec 
.) .. - . e J 

It follows from Eqs. (12) and (15) that in three­
photon annihilation of parapositronium in the P 
state there is a preference for the production of 
two large quanta with combined energy almost 
equal to m, while the energy of the third quantum 
is of the order of E. 

For parapositronium in the P state the most 
favored process is optical transition to the S state 
with probability of the order of 108 sec - 1, and sub­
sequent two-photon annihilation. 

The writer is grateful to V. A. Mashinin for 
checking some of the calculations involved in the 
present work. 
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