
SOVIET PHYSICS JETP VOLUME 36 (9), NUMBER 6 DECEMBER, 1959 

MOTION OF A PLASMA LOOP IN AN AXIALLY SYMMETRIC MAGNETIC FIELD 

L. M. KOVRIZHNYKH 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor December 25, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1834-1838 (June, 1959) 

Problems related to the dynamics of a plasma loop in an inhomogeneous axially symmetric 
magnetic field are considered. 

OsovETS1 and Shafranov2 have considered the 
conditions of equilibrium of a plasma loop carry­
ing a current in a magnetic field. In the present 
work, assuming stability over a small radius b, 
we consider the motion of such a loop as a whole 
in an axially symmetric magnetic field and find the 
relation which describes the variation of its large 
radius as a function of time. 

1. BASIC EQUATIONS 

We consider an axially symmetric magnetic 
field H ( r, z, t ) which is specified by the vector 
potential A= { 0, Acp, 0}. It will be assumed 
that the axis of the loop coincides with the sym­
metry axis of the field so that the configuration 
of the loop is given completely by the z coordi­
nate of its center and the quantity r, its large 
radius. The equations of motion can then be 
written in the form* 

d2x 2 i [ a ( 'I 1 )l {jj2 = fJ)H XZ X 7fX (ax) -l- i otX + _:_f + 2 , 

i=--r :{[ax+(I+ax)i], 

where 

-r = crsl J c2, 

(1) 

(2) 

(3) 

l = L (2r.r = 2 [In (8r /b)- 2], ~ = z / R 0 , x = r; R 0 , 

M is the total mass of the loop, N is the number 
of electrons, r 0 = e2/mc2 is the classical electron 
radius, L is the inductance of the loop, a is the 
conductivity of the loop, s = 7Tb2 is the cross sec­
tion, and R0 and H0 are constants which have 

*Generally speaking, the right side of Eq. (2) should con­
tain an additional term which describes the force due to the 
material pressure inside the loop. However, when b/r « 1 the 
introduction of this term in Eqs. (1) and (2) would only lead 
to a small correction and for this reason is neglected. 

the dimensions of length and field respectively.* 
As follows from Eq. (3), the effective real loss 

is characterized by the quantity y :::::: T /27TT ( 1 +a), 
where T is some characte,ristic time during which 
the current changes. For reasons which will be 
made clear below we shall be interested in the 
case y « 1, i.e., the case in which the reactive 
component is much larger than the real component. 

At the outset we consider the case character­
ized by y = 0; we then introduce corrections for 
the real losses. 

As can be easily shown, Eqs. (1)- (3) can be 
written in the form 

d2~ 1 dt 2 = -au 1 a~. (4) 

where 

U (x, ~. t) = <uh (ax- tp0) 2 / 2x ( 1 -' :xx), (5) 

and <p 0 = [ax + ( 1 + ax) i lt=to is a constant which 
is determined from the initial conditions (for t = 
t 0 we have x = x0, ~ = ~ 0 , i = i0 and so on). 

If it is assumed that au/at« dU/dt, the sys­
tem of equations in (4) yields the approximate en­
ergy integral (exact when au/at= 0) 

( dx )2 ( d~ )2 ( dx )2 , ( d~ \~ , -([{ +\& = dT 0 -;- dt)0 -;-2[U0 -U(x,~,t)]. (6) 

Whence it follows that if U (x, L t) < U0 = 
U (x0, ~ 0 , t0 ), then if the loop leaves such a field 
it acquires an energy increment AE = MR~ [U0 - UJ. 
This effect lies at the basis of acceleration of a 
plasma in inhomogeneous magnetic fields. 3•4 

Without making a detailed analysis of Eq. (4), 
we may note certain features of the behavior of 
the large radius, assuming for simplicity that 
(dx/dt) 0 = (dg/dt)0 = 0. 

*Since the quantities which appear in Eqs. (1), (2), and 
(3) depend on b logarithmically, the dependence of the small 
radius of the ring on time can be neglected in the first ap­
proximation. 
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1) In the case in which 

au I ax \x,. ~' < 0, u (Xo, ;) > u (x, ;) (7) 

for all x > x0 and ~ > ~ 0 , the radius of the loop 
increases without limit in the acceleration process. 

2) If, however, 

au I ax lx,. ~' > 0, u (Xo, ~) > u (x, ~) (8) 

for all x < x0 and ~ > ~ 0 , the radius of the loop 
approaches zero (this can happen only when cp 0 

= 0 ). 
3) In the remaining cases the radius of the loop 

can oscillate about one of the stationary radius 
values Xst determined from the conditions 

au ;ax= o, a2U 1ax2 > o, (9) 

where the oscillation amplitude generally increases 
monotonically during the acceleration process. We 
note, however, that for a strong dependence of Xst 
on ~ [and also when (dx/dt)0 ~ 0, (d~/dt)0 ~ 0] 
it may turn out that the loop moves from a stabil­
ity region into a region of instability during the 
acceleration process [as determined by Eq. (7) 
or (8)]; conversely, if there are also values of ~ 

for which the second of the conditions of (7) or (8) 
is violated, a loop which is in a region of instability 
may be "captured" in a stability region. In con­
elusion we may note that if ax and cp 0 are of the 
same sign, acceleration will be effective only when 
x0 > xm, where Xm is the first root of Eq. (9) for 
which ( a2u/ax2 ) xm < o. 

2. MAGNETIC MIRRORS* 

We consider the problem of reflection of a loop 
from an inhomogeneous magnetic field which re­
mains constant in time. 

First of all we may note that when y » 1 it is 
impossible to achieve effective reflection. Actu­
ally, since the current in this case is approxi­
mately d (ax) /dt, when the ring comes to rest 
the restoring forces vanish; the kinetic energy 
of the ring is converted entirely into heat. Thus, 
the efficiency of reflection increases as y is re­
duced. At the outset we consider the case in which 
y = 0. It follows immediately from simple physical 
considerations that in order for reflection to take 
place it is necessary that the energy of the recip­
rocatory motion of the loop be converted into mag­
netic energy and not into energy associated with 
radial motion. Furthermore, in most cases it is 
desirable that the loop receive no radial velocity 

*This problem has been considered in connection with a 
proposal by Veksler for using inhomogeneous magnetic fields 
for coherent cyclic acceleration.• 

as a result of the reflection. Obviously, these re­
quirements will be satisfied if the initial radius of 
the loop x0 is made equal to Xst ( ~ 0 ) under the 
condition that Xst depends weakly on ~. Carry­
ing out the operations indicated in Eq. (9) we have 

h = __!___ aax = (li _ ~) 1._ 
z- X ax X2 2 ' 

~ = l + 2 (1 + a.xl) (10) 
21 (1 +ax) ' 

where h = 2a/x is the mean field at the radius x. 
For the case a = 0 this condition has already 
been obtained by Osovets.1 

We consider the case in which the fields are 
such that the stationary radius does not depend 
on ~. This will be the case, obviously, if the 
vector potential is of the form a ( x, ~ ) = R ( x) z ( ~ ) 
and cp 0 is set equal to zero. 

Assuming at the outset that the orbit is stable, 
assuming that departures from the orbit p = x- 1, 
are small,* and limiting ourselves to the first non­
vanishing terms, we have 

where 

d2~1dt2 + :f. U(l,~)=O, 
d2p 1 dt2 + 2~p..U ( 1, ~) p = 0, 

(11) 

(12) 

[J. = [2- ~+a In hz I a In X- a In~ I a In X] lx=1· (13) 

If we now require that z 2 ( ~ ) be an even func­
tion of ~. we obtain "oscillatory" (generally speak­
ing, nonlinear) motion for the ~ -motion; conse­
quently the p -motion is described by the Hill 
equation which, with an appropriate choice of 
parameters, allows of stable solutions. 

Thus we see that a loop which receives anini­
tial velocity ( dUdt )o and is elastically scattered 
from regions occupied by the field will execute 
oscillations about the plane ~ = 0 with a period 

~2 

T = 2 y2 ~ [U (1, ~1) -U (1, 1;)]-'f,d~, (14) 
0 

where ~ 1 is the maximum excursion from the 
plane ~ = 0, determined from the relation 

U (1, ~1) = U (l, ~0 ) + 1/ 2 (d~ I dt)~. (15) 

If we denote the boundary of the magnetic mirror 
by ~b. the maximum energy of the loop Em for 
which reflection takes place is 

Em= MR~U (1, ~b). (16) 

If one now takes account of the real losses, cer­
tain correction terms appear in Eqs. (11) and (12) 
(these terms are of order y ); these terms cause 
a weak damping of the amplitude of the ~ -motion 
and an increase in the radial oscillations. 

*The constant R0 is chosen to make Xst = 1. 
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As an example we consider the motion of a loop 
in a field described by 

{ ~X I 2 

a (x, ~) = 1 12a1~ [x + (t..a I a,) xi I x] 

where A.a = 1 - a1• In this case 

for x~x, 

for x;;? x,, 

T = 2rt (1 + a)'l·~ I a1wH, 

Em= aiw7t-MR~~t I 2~2 (1 +a), 

(17) 

(18) 

(19) 

where the equilibrium radius R0 is found from 
the relations 

We now introduce the effect of the real losses, 
assuming that y « 1. Taking account of Eq. (17), 
we substitute the expression for the current i 
from Eq. (3) in Eqs. (1) and (2) and expand the 
right sides of the equations in a series in p. As­
suming now that when t = 0, ~ = 0, i = 0, and 
dUdt = ~ 0 , and limiting ourselves to the first 
non -vanishing terms in the expansion in p and 
first-order terms in y, we obtain 

t 

d·~ + Q2t = _E"_ e-t;,· \' ef'/,'t (t') dt' 
dt 2 <; 'T' ) ' <; ' 

0 

t 

(20) 

~:~ +p.~Q2~2(t)p=- ~: ~Ht)e-il''~et'/,'~(t')dt', (21) 

where 

Q 2 = w7tai I ~ 2 ( 1 +a), -r' = -r (1 +a). 

Whence, to first-order in y = 1/Sh', 

~(f)= ~l [e-I/2T' Sin Qf + j (J - e-f/2'' COS Qt)]. (22) 

Now, substituting Eq. (22) in Eq. (21) we have, to 
the same accuracy, 

d2p I dt 2 + (L~~~-t;,· sin2 Qt · p 

=- r~e~ [1 - e-112'' cos Qt] e-112'' sin Qt. (23) 

With an appropriate choice of parameters this 
equation can have oscillatory solutions, the am­
plitudes of which increase slowly in time. Thus, 
if the loop does not receive additionq.l energy the 
amplitude of its oscillations along the z axis de­
cay approximately as exp (- t/2T' ) , whereas the 
radial oscillations grow. If, however, the loop 
receives energy in such a way that its oscillation 
amplitude along the z axis remains constant the 
equation for the p -motion assumes the form 

d2p I dt 2 + fL~~~ sin2 Qt · p 

= ~~~~ [cos Qt -e-ll''] sin Qt, (24) 

i.e., the amplitude of the radial oscillations re-

mains bounded. In the case in which the energy of 
the loop increases the radial oscillations first 
decay,* and then, when E :::;:- MR3Q2/2.BM, increase 
sharply, i.e., the loop becomes unstable. In the 
present case this is what actually determines the 
maximum energy and thus there is no reason for 
making ~b > ( .BM) -1/2• 

3. STABILITY OF A LOOP IN A HIGH­
FREQUENCY FIELD 

We consider the case in which the field is a 
harmonic function of time, .i.e., 

a (x, ~. t) =a (x, ~)sin wt. 

We shall be interested in a stationary loop which 
executes small oscillations about the plane z = 0 
and some equilibrium orbit R0• Assuming that the 
field is "barrel-shaped" i.e., a (- ~) =a ( ~ ), it 
is easy to see that the stationary radius, deter­
mined from Eq. (10), will be independent of ~ 

(to first-order terms in ~ ) . Assuming that i = 0 
when t = 0, we find that in the absence of real 
losses (y = 0) Xst is independent of the time. 
When the real resistance is taken into account the 
equilibrium radius no longer remains constant but 
becomes a function of time. It can be shown that 
for sufficiently large values of y the presence 
of real losses leads either to breakup of the beam 
in the inward direction in the first quarter cycle 
(cf. reference 6) or to breakup in the outward di­
recti on in the first few cycles. 

To achieve stable operation it is necessary to 
make the relative magnitude of the real resistance 
small. 

As before, assuming a stable radius, we expand 
the right sides of Eqs. (2) and (3) in a series about 
x = Xst = 1, ~ = 0. Then, limiting ourselves to 
first-order terms in p = x -1, ~. and y we have 

d2~ 1 d62 + np (1 -cos 20) = 0, (25) 

d2p 1 d02 + fLP ( 1 -cos 20) = 2r' p [cos 0- e-Y8) sin 0, (26) 

where 

nRoH2 (Ro) 
P = Mw2f~ (1 + a) • 

It follows from Eqs. (25) and (26) that taking 
account of the real resistance has no effect on the 
~ -motion in the first approximation. In the equa­
tion for p, however, the real losses lead to the 

*We bear in mind the fact that the parameters are chosen 
for operation in the first stability region, i.e. ~~/l/3 < 0 2 • 
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appearance of a small external force (of order y), 
which does not represent any danger as far as sta­
bility is concerned. Although Eqs. (25) and (26) 
allow a whole series of stability regions, because 
of their relative narrowness, only the first region 
is of practical interest. For this region the pa­
rameters n, f.J., and p must be chosen in such 
a way that the quantities np and JJ.P lie in the 
interval (0, ~ 0.5). Assuming that n ~ fJ. ~ ~' 
we find that the loop will be stable if its par am­
eters, and the amplitude and frequency of the mag­
netic field are chosen in such a way as to satisfy 
the condition p < 1. From the expression for p 
it follows that for a given total number of par­
ticles in the loop and a given magnetic field this 
condition can be satisfied by making the field 
frequency sufficiently high. 
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