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The energy dependence of the cross -section for the scattering X ( aa) X near the threshold 
Eth of the reaction X (ab) Y (X, a, b, Y are arbitrary particles) is studied on the assump
tion that there are long-range attractive forces between particles b and Y. It is shown that 
if these forces are capable of producing bound states of the particles b + Y there are reso
nances in the scattering cross-section. These resonances lie below the threshold of the re
action X ( ab ) Y. A detailed study is made of the case in which attractive Coulomb forces 
act between b and Y. For this case the number of resonances is infinite, and the density 
of the resonances approaches infinity as the threshold is approached from below. 

INTRODUCTION 

IN a previous paper1 the writer has studied the 
energy dependence of the eross -section for the 
scattering X ( aa) X near the threshold of the re
action X ( ab) Y. It was found that if there is no 
Coulomb interaction between b and Y the scat
tering cross-section has a characteristic singular
ity at the threshold point. In this connection it is 
interesting to examine the case in which long
range (for example, Coulomb) forces exist be
tween b and Y. The present paper is devoted 
to the study of this problem. 

Let us look at the statement of the problem in 
more detail. We shall study the energy depend
ence of the cross-section for the scattering 
X ( aa) X near the threshold Eth for the reaction 
X ( ab) Y. No restrictions are placed on the nature 
of the particles X, a, b, Y, except that for sim
plicity we shall regard them as spinless. Let us 
introduce one more simplification: we shall as
sume that there are no other inelastic processes 
besides the reaction X ( ab) Y in the range of en
ergies with which we are eoncerned. We shall 
free ourselves from this restriction in Sec. 3. 

,The reason that some sort of anomalies in the 
scattering cross -section are to be expected near 
Eth is as follows. Suppose the long-range poten
tial between b and Y is an attractive one and 
is capable of leading to the formation of a bound 
state with binding energy ll.. If such a state ex
ists, then it can be formed in the collision of par
ticles X and a (because the reaction X ( ab) Y 
exists), and consequently the scattering cross
section must have a resonance at the energy of 

formation of the bound state, E = Eth -fl.. Breit2 

was the first to call attention in the literature to 
the possibility of such an effect. It is clear that it 
is possible only if the size of the long-range poten
tial is much larger than r 0, the radius outside 
which one can neglect specifically nuclear forces. 
We shall always assume that this condition is ful
filled. 

The general theory of the effect is presented in 
Sec. 1. The second section is devoted to a detailed 
study of the case in which an attractive Coulomb 
potential acts between b and Y. This situation 
is encountered whenever differently charged par
ticles can arise from the reaction. Section 3 con
tains a discussion of the effects that appear when 
one of the particles formed in the reaction has a 
finite lifetime. 

1. GENERAL THEORY 

Let us consider the general problem of the be
havior of the cross-section for the elastic scatter
ing X ( aa) X near the threshold Eth for a reac
tion X (ab )Y. We consider a state with a given 
total angular momentum l; in the region outside 
the action of nuclear forces ( r > r 0 ) the wave 
function has the form 

'F c= <P (a, X) (R~-l (r)- S1Rrl(r)) Y t,. 

---<P(b, Y)A1 1 J?~:l(r)Yzo, (1.1) 

where <I> (a, X) and <I> (b, Y) are the internal 
wave functions of particles a and X and of b 
and Y, respectively; R{;>(r) is the radial func
tion for the relative motion of particles a and 
X with the wave number k (the signs ± refer 
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to diverging and converging waves); Jtj;~ ( r) is 
the radial function for the diverging particles b 
and Y with the wave number k1; Yz0 is the an
gular part of the wave functions, normalized to 
unity; and Sz and Mz are the elements of the 
scattering matrix, whose energy dependence we 
have to determine. The wave numbers k and 
k1 are connected by the relation 

h2k2/2 f1- = h2ki!2 f!-1 + E th 

[ J1. and Jl.t are the reduced masses of (a+ X) and 
(b + y )]. 

The radial functions Rk> are determined in 
the usual way. They are combinations of Bessel 
functions if a and X can be regarded as free in 
the region r > r 0, and Coulomb functions if the 
particles a and X are charged. As for Jt<+>, 
this is the function that describes the motion of 
particles b and Y in the field of the long-range 
potential that acts between them. At infinity it 
must behave like eiktr/r. Hereafter we shall 
always suppose that R <+> and Jt<+> are normalized 
to unit flux. 

The scattering cross-section is given by 

In order to determine the dependence of sz on 
the energy, we use a formula proved in the Appen
dix, according to which 

(1.2) 

where the quantities a and b can be supposed 
independent of the energy near the threshold, and 

x<+) = .!!:_ In Jt<+> j 
b dr k, r= r, (1.3) 

Thus for our problem it suffices to determine the 
energy dependence of the function K{;>. We shall 
first consider the range of energies E < Eth. 

For r > r 0 the function Jtj;~ = x/r satisfies 
the usual Schrodinger equation 

d2xjdr2 + Iki -l (l + 1)/r2 - (2f!-1/h2) V (r)] x = 0, (1.4) 

where V is the long-range potential between par
ticles b and Y. We are interested in the solution 
of this equation that behaves like eikt r at infinity. 
Since E < Eth and k1 is pure imaginary, this 
asymptotic form assures the finiteness of x for 
r ---. oo. As is well known from the general theory 
of the Schrodinger equation, 3 the function x for 
small r can be represented in the form 

(1.5) 

• 
where ~ and E: are functions of k1; the concrete 
form of these functions is determined by the poten
tial V. The function E: is real, since both the 
equation (1.4) and the boundary condition at infin
ity, x ~ eiktr = e-lktlr, are real. Some general 
conclusions can be drawn about the energy depend
ence of the function E:. Indeed, let us continue 
equation (1.4) into the region r < r 0• If it admits 
of the existence of bound states with binding ener
gies .6-m, then the function E: must go to zero at 
the values k1 = ( kdm = ( .6-m /2JJ.1h2 ) 112, since 
only under this condition is x regular at the origin. 
Thus as a function of the energy E of the particles 
a + X the quantity E: has the form shown schemat
ically in Fig. 1. Sometimes, as for example in the 
case of the Coulomb field, considered in Sec. 2, E: 

goes to infinity in the intervals between the values 
.6-m· This makes no difference, however, in the fol
lowing arguments. 

FIG. 1 

Let us calculate the logarithmic derivative K{;>. 
From Eqs. (1.3) and (1.5) we get 

:P>=_i__if_ i(2l+l)e j-, 
-b ro I_ ie + (k1ro) 21 + 1 • 

(1.6) 

Let us examine the behavior of K{;> near one 
of the bound states. Since we are considering the 
region near the threshold, where ( k1r) is small, 
it f?llows from Eq. (1.6) that the function K{;> is 
practically constant and equal to - ( l + 1 )/r0 

everywhere except in narrow intervals of energy 
around the energies .6-m of the bound states. In 
these intervals, defined by the condition IE: I ~ 
I ( k1r 0 ) 21+1 I. K{;> changes very rapidly, running 
through the entire range of values from - oo to 
+ oo. This is shown schematically in Fig. 2. 

0 E-Eth 

FIG. 2 

Substituting Eq. (1.6) in the formula (1.2) for 
Sz, and noting that K{;> is real for E < Eth• we 



1258 A. I. BAZ' 

can write Sz in the form e2i<P, where <P is the 
real phase of the scattering Sz. 

The energy dependence of <P can be seen from 
the formula 

-1 Im(a + b ,J+)) 
'f c.c tan b 

Re(a + bxb+)) 
(1. 7) 

Using the energy dependence of K{;> obtained above 
(see Fig. 2), we easily see that the scattering phase 
shift <P remains constant everywhere except in 
narrow regions around the bound-state energies 
E = Eth- .6.m, where it changes by 1r. As can be 
seen from the formula for the scattering cross-
section 

:;I= 4rc k- 2 (2l + I) sin2 q;, 

to such changes of the phase shift there correspond 
resonance peaks of the scattering cross-section at 
energies close to E~ = Eth- .6.m, and the scatter
ing cross-section has the shape shown in Fig. 3. 

I 
I 

1 I 
I I 

--':1,.--' ~:lr i{r-
, I 
I I 
I I 

FIG. 3 

We can determine the width and shape of the res
onance peaks. For this purpose we rewrite Sz in 
the following way: 

S _ b c + e _ b ,
1
-1 2ic2 \ 

1 - b* c* + e - b* - (c1 +e)+ icz]' 

c=c, ·- ic2 , (1.8) 

where the complex constants c and b are ex
pressed in an obvious way in terms of the constants 
appearing in Eqs. (1.2) and (1.6). We note further 
that near the m -th bound state the quantity E can 
be expanded in a series in powers of the energy 
difference, 

(1.9) 

Substituting Eq. (1.9) in Eq. (1.8), we get for Sz 

Cz r.= if, (1.10) 

This equation has the form of the usual Breit
Wigner formula (cf. reference 3), with r 8 play
ing the role of the elastic width, which in our case 

is the total width, and the constant c 1 I A is the 
shift of the resonance maximum relative to the 
energy of the bound state. Thus the general shape 
of the resonance peaks is described by the Breit
Wigner formula. The parameters of the reso
nances ( r e and c d A) cannot be calculated, 
since through the constants c1 and c2 they de
pend on the form of the wave function for r < r 0• 

This picture corresponds exactly to the reso
nance scattering that is well known from the theory 
of nuclear reactions. The part of the quasistation
ary states is played by the bound states of particles 
b + Y in the field of the long-range potential. 
There is no absorption, since for E < Eth there 
are no inelastic processes, and therefore at its 
maxima the cross-section reaches the maximum 
value 47rk-2(2Z+1). 

Up to now we have spoken only of the region 
E < Eth. What will happen at the threshold point 
itself and above it? Here we must distinguish two 
cases: for large r the long-range potential falls 
off either a) faster than 1/r, or b) as 1/r. In 
the first case the theory developed in reference 1 
applies, and at the threshold point the differential 
cross-section has a singularity (a peak, an inverted 
peak, or a finite discontinuity), and above the 
threshold it is a smooth function of the energy. The 
width of the singularity at the threshold point is 
very small: I k1 1 < R- 1, where R is the radius 
of the long-range potential. Case b) is treated in 
the next section. Looking ahead, we can state that 
the threshold is a point of condensation of the reso
nances, and above the threshold the cross-section 
is constant. 

2. CASE OF ATTRACTIVE COULOMB FORCE 
BETWEEN b AND Y 

The case of a Coulomb attraction can be studied 
exhaustively, since the analytic properties of the 
Coulomb functions are known. Using the method 
of reference 4, we find without difficulty that for 
I kt I - 0 the following formulas hold: 

J?<+> 1 (G ' ·p ) ., c-1 2A (I ( · k, =--, 1----:-t 1 =-'-r o [- n -tz) 

+ f (x) -- C~ / 2x) + BJ, (2.1) 
where 

x ~~ ie1e2fJ. 1 I h2k1 , z = 2ik1r, 
[00 

A= <--;l )J ( -- xzt-+-1+1 / n!f (2l + n + 2), 
fl-=:.0 

21 )t-1 oo n+l-t-1 1-t-1 
B = "\1 J!!_ r (2!-'-- I --- t) -i- '1.1 (-xz) (-) 

LJ t! ' ' .LJ n! r ('2-l + 2 + n) 
t =0 n=l 

n n-t-21-;-1 
x [- 21 --'-- ,, _!_ -L ,, _i_J 

I L...J s l LJ $ ' 

S=l S=l 

C0 = [rcxe'"x /sin rcx]'1', 2f (x) =c); (x) +c); (- x), 
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e1 and e2 are charges of particles b and Y, y 
is the Euler constant, and 1/J is the logarithmic 
derivative of the r function. As can be seen from 
the formulas, A and B are real and do not depend 
on the energy (the product xz does not contain k1 ) • 

Let us consider the quantity 

T =In (- iz) + f (x) - C~ I 2x. 

From the properties of the 1/J function5 

ejl(y)-4(-y)=-7t cot rry, 

4 (y) =In y for I y i ~ oo; [ arg y I < rr 

it follows that 

J-irc, E> Eth 
T = ln(xz) + ' 

\_,cot rrx, E <Eth· 
(2.2) 

Substituting Eq. (2.2) in Eq. (2.1) and calculating 
the logarithmic derivative, we get 

<+> {(p +is) I ro (Pl + is1), E > Eth• (2.3) 
Y.b = (p+scotnx)lro(Pl+slcotrrx),E<Eth• 

where p, p1, s, and s1 are constants that can 
be expressed simply in terms of A, B, and their 
derivatives with respect to ( xz ) . 

Substituting Eq. (2.3) in Eq. (1.2), we get for Sz 

Sz= {
(ex+ i~) I (ex*+ i~*), E > Eth, 

(ex+ ~cotnx)l(ex*+ ~*cotnx), E <Eth· 
(2.4) 

Here a and {3 are constants made up from a, 
b, p, s, p1, and s 1• We now have assembled 
all the formulas needed for the study of the be
havior of the elastic scattering. 

Let us consider the region above the threshold. 
Here two processes are possible: elastic scatter
ing and the reaction. The cross-section for elastic 
scattering is given by 

a5 = ;(2l+ l)IS1-lj2 

=; (2! + l)~ex~!~~* -1j2, (2.5) 

and the reaction cross -section by 

a,= ; 2 (2l+1)[1-[Sr[21 

= :. (2! + 1) [ 1 -I ex~!::. n . (2.6) 

The total cross -section is 

2rr [ R ex+ i~ ] a1 = a, + a8 = F (2l + 1) 1 - e a*+ i~* · (2. 7) 

Since a and {3 do not depend on the energy, all 
three cross-sections are constants. For ur this 
has been known for a long time. 6 

Let us now go on to the region below the thresh
old. From Eq. (2.4) we get 

a.=~(2l+ 1)[1- Re ex+~cotrrx] 
k2 ex* + ~*cot nx ' 

(2.8) 

and the scattering cross-section has the form 
shown in Fig. 4. When the cotangent is large, the 
cross-section is constant (the plateaus between 
the resonances in Fig. 4), and is given by 

aso = 4rrk-2 (2l + 1)(sin~)2 [~[-2 • 

The sharp changes in the cross-section occur only 
for cot 1rx ~ - Re ( a I {3); in such a place the cross
section runs through the whole range of possible 
values from zero to 47Tk - 2 ( 2l + 1 ) . Corresponding 
to the nature of the Coulomb spectrum the cross
section has an infinite number of resonances, which 
are more and more closely spaced as we approach 

IS 
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FIG. 4 

the threshold point. The width of the resonance re
gion is obviously given by the energy of the first 
Coulomb level, i.e., the quantity e!e~J.tt /2h2• For 
heavy particles the width can be large. Thus if b 
and Y are singly charged and their masses are 
of the order of the nucleon mass the width is ~50 
kev. A quantity of interest is the average value of 
the cross section: 

E+t. 
- 1 I 
Os = 2~ j a 5dE 

E-t. 

= ~~ (2! + 1) Re {+ ~ 
-00 

[ ex+ ~Y J dy I 
1 - a*+ ~·y 1 + y2J 

2rr [ · a+ i~ ] 
= k2 (2! + 1) I - Re ex* + W = a,. 

In the integration one must use the inequality 
i ( a{3* - a* {3) > 0, which follows from the fact 

(2.9) 

that above the threshold the condition I Szl ::s 1 
must hold. Equation (2.9) leads to a remarkable 
result: the average scattering cross-section below 
the threshold is equal to the total cross-section 
above the threshold. Thus the total cross-section 
(below the threshold it is just the elastic cross
section) is in a certain sense continuous as we 
go through the threshold point, whereas the aver-
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age elastic cross -section decreases discontinu
ously at this point. 

3. CASE OF PRODUCTION OF AN UNSTABLE 
PARTICLE IN THE REACTION 

It has been assumed so far that the particles b 
and Y are stable. We shall now consider the case 
in which one of them ( Y) has a finite lifetime T. 

It is not hard to see that the instability of Y can 
decidedly change the shape of the cross-section 
for the elastic scattering X ( aa) X below the 
threshold. In fact, let us recall how the scattering 
process occurs: in the collision of a with X 
there is formed a certain intermediate state of the 
particles a, X and b, Y, which then decays to 
a state a + X (below threshold) or to a + X and 
b + Y (above threshold). If Y is unstable, it can 
decay during the time t of existence of the inter
mediate state. As a rule, however, this can be 
neglected, since t is usually small (of the order 
of nuclear times ) . The only exception is the case 
of formation of a bound state of the particles b + Y, 
about which we spoke in See. 1. The time of exist
ence of this state can reach large values; if it is 
comparable with T, an appreciable part of the Y 
in the intermediate state has time to decay, and 
this leads to a corresponding decrease of the scat
tering cross section. This effect is important only 
near the resonance maxima of the scattering cross
section and can produce a decided smoothing-out of 
these maxima. We also note one other conclusion 
from these considerations: the cross-section of the 
reaction 

X (ab) y• (3.1) 

(Y* means the products of the decay of particle Y) 
will have maxima near the energies for formation 
of the bound states of the particles b + Y. 

It is not hard to obtain formulas for the scatter
ing cross-section and the cross-section for the re
action (1.3). To do so we must substitute in Eq. 
(1.10) in place of Eth the quantity Eth- ir ( r 
is the energy width of partiele Y ). We then get 

S _ ___!!____ [l _ 2if e J 
t- b* (E-E:r,)+i(fe+f). 

(3.2) 

This formula, like Eq. (1.10) has the usual Breit
Wigner form, but now the total width is not just 
the elastic width. The cross-sections for scatter
ing and for the reaction (3.1) are obtained by sub
stitution of Eq. (3.2) in Eqs. (2.5) and (2.6). They 
are just the usual Breit-Wigner formulas, and we 
shall not write them out here. We note only that 
if r > r e, then at the maxi:num the cross -section 

for the reaction (3.1) will be larger than the scat
tering cross-section. 

Like Eq. (1.10), Eq. (3.2) is valid only in the 
immediate neighborhood of the energy of a bound 
state: E - ( Eth- ~m) « 6 ( 6 is the distance be
tween resonances). Far from the resonances, 
however, the instability of Y can be neglected, 
as we have seen. The cross-section of the reac
tion (3.1) is equal to zero for such energies, and 
the scattering cross-section is constant. The ap
proximate character of Eq. (3.2) also shows itself 
in the fact that it is true only if r < 6. 

It is easy to generalize the theory of Sec. 1 to 
the case in which for E < Eth some other reac
tions are possible besides elastic scattering. To 
do this we must take the point of view of the usual 
resonance theory of nuclear reactions and regard 
the bound states of the particles b + Y as inter
mediate states of our system. Then introducing 
the partial' widths for decay of a bound state into 
various channels, we easily obtain the generaliza
tion of the results of Sec. 1: the cross-sections 
for all the processes will have resonances at the 
energies E ~ Eth- ~m; the heights of the reso
nances will be determined by the partial widths 
for the respective channels; and the width of each 
resonance will be the total width. 

In conclusion I would like to thank Ya. A. Smoro
dinski'i for his constant interest in this work and 
L.A. Maksimov for reading the manuscript of the 
paper and making a number of comments. 

APPENDIX 

In the region outside the radius of action of nu
clear forces ( r > r 0 ) the most general wave func
tion with a given angular momentum l has the form 

'F = (RH'- SR<+l) <D (a, X) Y to 

;- D (~<-l- n~<+l) <D (b, Y) Y to• (A.1) 

where S, Q, and D are certain constants. The 
coefficient of R <-l is set equal to unity, since l]F 

can be multiplied by any number. For r = r 0 this 
function must join on to the internal wave function. 
Then in general the internal wave function will not 
satisfy the conditions of regularity. These condi
tions will be satisfied only if S, Q, and D take 
certain definite values. Corresponding to the two 
possible channels (scattering and the reaction) 
there must exist two and only two sets of values 
of S, Q, and D for which l]F is regular. Let 
us denote these values by Si, Qi, Di ( i = 1, 2), 
and the two corresponding regular functions by 
l]F1 and l]F2• The quantities Si, Qi, and Di can 
be expressed in terms of the values of the wave 
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function and its derivative at the surface of the 
nucleus. To do this we must consider separately 
the radial functions for the particles a + X and 
b + Y in Eq. (A.1), and match their logarithmic 
derivatives, and also the ratio of these two func
tions, at r = r 0 to the corresponding quantities 
formed from the internal wave function. We thus 
get 

p<-r __ sip<+r j = 'i· 
p(-)- sip<+> r~r, 

""'(-)'- fl.a51(+)' I 
""<-J_o'.di'!<+> = Pi• 

l r-==ru 

(A.2) 

where the prime indicates differentiation with re
spect to r; Ti, Ph and 01 are determined by the 
internal function; and !-! and 1-!t are the reduced 
masses for the particles a + X and b + Y. From 
Eq. (A.2) we easily get 

(A.3) 

where 

X~±)= (R<=>',t R(=)) lr=r,, xi±)= (.9i'(±)' / .9i'<=>) \r~r,• 

We note that by using the law of conservation of 
numbers of particles and the reversibility of the 
time one can show that the quantities Ti> Pi• and 
Ui are real, and that furthermore one can choose 
the functions in such a way that Ti =Pi and Utu2 

= -1. This must be kept in mind in order to as
sure ourselves that the scattering matrix obtained 
below is unitary and symmetric, as a scattering 
matrix should be. 7 

We can now determine the scattering matrix 
of our problem. To do this we take the general 
wave function 

A~1 + A2~2 = ID (a, X) [(A1 + A2) RH 

- (A1S1 -~ A2S2) R<+>] Y to 

+ ID (b, Y) [(A1D1 _c. A2D2) .9i'<-l 

- (AIDIQI + A2D2D2) .9i'(+J] Yto (A.4) 

and require that it describe the processes occurring 
in the collision of particles a +X. To this state
ment of the problem there corresponds a function 
that does not contain converging waves of particles 
b + Y. In order to get such a function, we impose 
on the amplitudes At and A2 the condition 

(A.5) 

Then, setting At + A2 = 1, we can write the func
tion (A.4) in the form 

[R<->- SR<+>]ID (a, X) Yto- M.9l<+>a> (b, Y) Yt0 , 

where the quantities S and M that are the ampli
tudes of the outgoing waves of particles a + X and 
b + Y are given by: 

s -- DtS2- D,S, M = _Dfl,-Dfl2 Dl02. (A.6) 
- D,- D2 ' 1- 2 

Substituting Eq. (A.3) in Eq. (A.6), we get for S: 

_ (-r2 -- x~-)) (-r,- Xh+)) + cri (-r2 - xi+)) (-rt- x~-)) pH I 
S- (-r2 - x~+)) h- Xb+)) + crf (-r2- xi+>) (-r,- x~+)) p<+) r -r,. 

(A.7) 

From this formula we can determine the energy 
dependence of S near the reaction threshold. We 
begin by noting that near the threshold the entire 
energy dependence is determined by the function 
K{;>, and all the other quantities in Eq. (A. 7) can 
be regarded as constants. Let us prove this. By 
definition K{;> is the logarithmic derivative of the 
radial function of particles b + Y at r = r 0• This 
function has a singularity at k1r 0 ---. 0, and conse
quently K{;> changes rapidly even for small values 
of k1r 0• As for the other quantities in S, Ki±> and 
R <±> by definition have no singularity at the thresh
old and depend only on k, which near the threshold 
is a quadratic function of k1: 

-. j2p.E !{ 1 h2k2 ) 
k ~ v --¥ \1 + 2 2p.,£~ . 

The situation is also similar for the quantities T t, 
T2, and u1• They are determined by the form of 
the wave function inside the sphere r < r 0, where 
the specifically nuclear forces are large, and there
fore these quantities cannot change much for small 
changes of the energy of the system near the thresh
old. This conclusion is invalid only if there exists 
near the reaction threshold Eth some level of the 
system that owes its occurrence to the nuclear 
forces. 

Changing the designations of the constants, we 
now get the formula for Sz given in Sec. 1. 

This formula for Sz is valid both above and 
below the threshold. In fact, only two assumptions 
have been made in its derivation: 1) the quantities 
Ti, Ph and Ui are real and related as stated 
above, and 2) the complete wave function must not 
contain .9i;'<->. Strictly speaking the first assumption 
is valid only above the threshold, but owing to the 
constancy of the quantities Ti> Pi• and Ui, which 
has been proved, it remains true in a small region 
for E < Eth· The second condition holds equally 
well for both regions, above and below the thresh
old. For E > Eth it corresponds to the absence 
of converging waves of b + Y, and for E < Eth 
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( k1 imaginary) it is required for the finiteness 
of the wave function at infinity. 
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