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Boundary conditions have been obtained for the hydrodynamical transport equations for a 
gas mixture. The conditions take into account slipping and the temperature jump at the 
boundary with a solid surface. 

l. As is known, corrections due to the finite mean 
free path appear in the boundary conditions for hy­
drodynamic transport equations before they appear 
in the equations themselves. 1 Therefore, when 
making the transition from hydrodynamic flow to 
molecular flow, there exists a region of values 
l/ a < 1 ( l is the mean free path and a is the 
characteristic dimension of the problem), where 
these equations can still be used, but the boundary­
condition corrections linear in Z/a cannot be neg­
lected. Furthermore, these corrections may prove 
to be substantial even at high pressures, if they 
lead to the appearance of noticeable additions to 
the convective terms in the transport equations 
(see, for example, reference 2). 

Corrections to boundary conditions for a one­
component gas were investigated by many au­
thors.3•4 The most thorough method for obtaining 
them was developed by Grad.5 In this paper we 
shall generalize this method to find corresponding 
boundary conditions for a binary inhomogeneous 
gas mixture on a non-absorbing solid surface. 

2. We describe a binary mixture of gases by 
distribution functions fa(r, ~. t), normalized for 
the density of the molecules of the a component. 
Here r is the radius vector of the molecule, ~ 
its velocity, and t the time. The internal degrees 
of freedom of the molecules are neglected. 

The principal macroscopic quantities will be 
introduced with the aid of the equalities: 

n~ (r,t) = ~ f ~ (r, ~. t) d;, 

"' 

(1) 

where na. Pa• and Ua are respectively the den­
sity of the molecules, the mass density, the local 
velocity of the a component; p and u are the 
mass density and velocity of the local center of 
intertia of the mixture, and rna is the mass of 
a molecule of type a. 

Introducing the relative velocity c = ~ - u, we 
form the moments 

(2) 

The physical meaning of these moments is obvious. 
The partial pressure Pa• the mixture pressure 

p, the stress tensor of the mixture Pij• and the 
mixture temperature T are 

P"' = ~ Pa, ;;, p = 2; p"', Pa.. ii = P,_, ii- Pao;i, 
~ 

~ 

Repeated Latin indices will henceforth be 
summed. 

(3) 

3. We expand fa(r, ~. t) in a series of Hermite 
vector polynomials. Confining ourselves to the 
third approximation, we obtain after transforma­
tions analogous to those used by Grad5 

• ( 1: t) _ f [ I Rtt,i , ma. Pa.,ik . 
t~ r,,, - a.o +-·ciT ·JkT -c,ck 

Pa. - Pa 

J ( 2m~ ·) (rna. 2 ) ci J-
T TO \ kf Sa, i - SR. a., i 1 \ kT C - 5 p; , (4) 

where 

f a.o = na. (mrx/2rr kT)'I• exp (- ma.c2 j2kT). (5) 

4. We consider two-dimensional flow of gas 
near the surface x = 0 (the x axis is directed 
along the outward normal to the surface, the y 
axis in the flow direction ) . If the gas is in equi­
librium with the wall, then, in the narrow boundary 
layer whose thickness is on the order of the length 
of the mean free path of the molecule, the distribu­
tion of the molecules that collide with the wall dif­
fers from the distribution of the molecules that 
are directed toward it. It is natural to introduce 
in this layer two distribution functions f~ ( r, ~, t) 
for molecules with ~x > 0, and f(y ( r, ~, t) for 
molecules with ~x < 0. These "parts" of the dis-
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tribution function will be related to the general 
distribution function by the equation 

fa (r, £,I)= t: (r, £, t) + f:(r, ;, t), 

f:(r,£,1)=0 for~x<O, 

r: (f, '£, /) = 0 for ~X> 0. (6) 

By way of a kinetic boundary condition we as­
sume that some of the molecules incident on the 
wall are specularly reflected, while the others 
are absorbed on the wall and are then emitted 
with a Maxwellian distribution corresponding to 
a wall temperature T0, i.e., 

+ xa exp (- nza ;~; 2kT0 ) for x = 0. (7) 

The parameters f3a and Ka are not independent, 
since they are related by the condition that no mol­
ecules accumulate on the wall. 

Supplementing (7) with the condition Ka = 0 at 
~x < 0, we can expand (7) in a series of Hermite 
vector polynomials. Equating the coefficients of 
the corresponding polynomials, we obtain an in­
finite number of boundary conditions for the mo­
ments of distribution function. However, in view 
of the fact that the distribution function is approx­
imated by a finite number of terms in the expan­
sion in Hermite polynomials, all these conditions 
cannot be satisfied simultaneously. 

From simple physical considerations it is clear 
that it is necessary to retain only the conditions 
connected with the mass, energy, and tangential 
momentum fluxes that are normal to the wall, 
since the wall "deforms" precisely these fluxes. 

The first of these boundary conditions ex­
presses the fact that the solid surface absorbs 

no molecules, 

Uax I = 0. 
X=O 

(8) 

We insert the distribution function (4) into the 
kinetic boundary condition (7). We then multiply 
(7) successively by cx, cxcy, c2cx, and integrate 
in velocity space, thus obtaining the second and 
third boundary conditions: 

~ Pa, xy (1 +~a)+ (1- [-la) (Say/5 V~ qa 

( 1 + ~")Sa, x + ( 1 -- ~") ( 4p" 

where 

q~ = 2kT (0)/m", 

T ( 0 ) is the temperature of the mixture at the 
boundary. 

(9) 

(10) 

(11) 

It is more convenient, however, to have boun­
dary conditions for the entire mixture and one of 
the components, instead of boundary conditions 
that pertain to each component separately. To 
simplify the notation, we shall confine ourselves 
to the case when the gas molecules are only dif­
fusely scattered by the wall, i.e., f3a = 0. We 
obtain from (8) 

Uxl = 0. 
X=O 

(12) 

Summing (9) and (10) over a and neglecting small 
terms of second order, we obtain 

Uul = _ 1t'I•(Pr, xy + P2, xy) + 2/s(SIY jqr + S~yjqz) + 1/z(R1yq1 + R 2yq2 ) 

x=O 2 (PI!ql + Pz/qz) + (pl. xxNl + P2, xxNz) 
(13) 

To-T(O) 
T (0} 

(21t)'/, Sx+(kTo/21t)'1• (P1. xxlm{• + P2, xx!m¥•) 

4 (kT0)'/• n1m{• + n2m'j,' 

These formulas determine the speed and tern­
perature of the gas mixture at a boundary with a 
solid surface. We use these to obtain boundary 
conditions for the equations of hydrodynamics. 
For this purpose we assume that the hydrodynamic 
approximation, which is correct only for x » l, is 
applicable all the way to the boundary, and we ex­
press the fluxes contained in (13) and (14) in terms 
of the corresponding gradients. Using the Chap­
man and Enskog formulas 6 and neglecting terms 
that contain the small quantities Pa,xx• we find 

T0 -T(O) 
T(O) 

uy I = -n-,:~Y,'.,-"-'1t+f_2~_2r_m.,..,,2,.-d:: I + ~ ~~ \ 
X=O X=O X=O 

(14) 

(15) 

(16) 
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where 1J is the coefficient of viscosity of the mix­
ture, kT is the thermal diffusion ratio, A. the co­
efficient of heat conduction of the mixture, 

PIP2 F F ) k a In T} + fiP ( lY - 2Y + T -ay ' 

D12 is the coefficient of mutual diffusion, Fa is 
the force acting per unit mass of the a compo­
nent, n = n1 + n2, and y = n1 /n. 

Formula (15) determines the temperature dis­
continuity at the boundary of the gas mixture and 
the solid body, while Eq. (16) determines the slip­
ping speed. 

The first term in (16) describes Maxwellian 
viscous slipping for a boundary mixture, while the 
third describes diffuse slipping, due to the pres­
ence of concentration, pressure, and temperature 
gradients in the mixture and also due to the pres­
ence of an external field. 

The second and fourth terms are due to thermal 
slipping. The fluxes Xay contained in the fourth 
term cannot be expressed in terms of known kinetic 
coefficients. They can be calculated, for example, 
by a variational method. 7 

It is interesting to note that, owing to diffuse 
slipping, a body placed in a mixture of gases of 
inhomogeneous concentration should be set in 
motion. This phenomenon is to some extent anal­
ogous with the radiometric effect. 
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