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We consider the interaction produced between conduction electrons and lattice vibrations 
by the polarization due to these vibrations. The possibility of existence of polaron states 
is investigated. The electron mobility is evaluated. 

THE interaction of an electron with the lattice 
vibrations of an ionic crystal can be considered 
by taking into account the polarization caused by 
the vibrations even in the approximation of point­
like ions. In the case of homeopolar crystals, 
there is no polarization in this approximation. 
This forces us to use either the Bloch potential, 
which does not completely represent the interac­
tion, 1 or, as is commonly done lately, to use the 
deformation potential.2 3 But, as shown in refer­
ence 4 (henceforth referred to as II, ) consider­
ation of the dipole moment of the atoms leads to 
a polarization due to lattice vibrations. This po­
larization should cause an interaction between the 
electron and the lattice vibrations. In this paper 
we develop on this basis a quantitative theory of 
the interactions. This theory is used to investi­
gate the existence of polarons in the homeopolar 
crystals and to evaluate the mobility of the con­
duction electrons. 

To simplify the calculation we do not take into 
the consideration the complexity of the isoener­
getic surfaces in the conduction band, 5 but adopt 
a simple model of spherically symmetric surfaces 
with the center at k = 0. This simplification is 
not a principal one, and can be got rid of by known 
methods. 6 

1. INERTIAL POLARIZATION OF THE CRYSTAL 

We consider forced lattice vibrations at zero 
frequency, i.e., atomic displacement and dipole 
moments due to a constant external field. Let 

D' ( r) be the intensity of the external electric 
field, D8(K) and D'(K) the Fourier coefficients 
in the expansion of D' ( r~ ) in terms of reduced 
and free wave vectors: 

l ~' l D' (r,) = .L.J D, (K) exp (iKr,), (1) 
K 

1237 

o; (K) = ~ D' (K + 2rrb) exp (i2rrbr,), (2) 
b 

where r~ are the coordinates of the s -th atom in 
the Z-th cell, b the vector of the reciprocal lattice. 
Introducing the dimensionless Fourier coefficients 

D, = WI e) o:, D = (d2 I e) D' 

( d is the lattice constant and e is the electron 
charge ) we get the equations of vibrations, which 
we are interested in, from (4,II), in which we use 
a frequency Q = 0 and subtract D1 from the left 
hand side of the second equation: 

Aw1 + F (v1 - v2)- (!61t I 3) w + 16rr (w, s) s- 0 1 = ifLx 

X [(C I 2)(s ;'< v2) + S (s ;'< w2)J +iJ.2x2 f (v2; W1; W2), (3) 

where Vs, Ws are the dimensionless amplitudes 
of the displacements and of the dipole moments; 
L, F, D, C, and A are the parameters of the 
theory; p, ~ 10-5 is the small parameter of the 
expansion; K is the modulus of the dimensionless 
wave vector and s is the unit vector in its direc­
tion; cp and f linear functions of the amplitudes; 
w = w1 + w2; S = 20 and 11. We can get two other 
equations by permuting the indices 1, 2 and by in­
terchanging i and - i. The symbol "* denotes 
as in the previous articles of this series, 

(s ;'< v) = i (Sy Vz + Sz Vy) + .... 
To investigate the polaron states we must (see 

references 7 and 8) find the inertial part of the 
crystal polarization. To find the amplitudes w~i> 
of the dipole moments of the inertial polarization, 
we must solve Eq. (3) for Vs, and holding these 
values constant, yve put Ds = 0. This gives us 
equations for w~I), from which we can find 
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wUl s = 2ph<2 (A + 64rrl3f1 ['11 (vt0 t s) t s 

+(12- S2 I A) (W1° j( s) j( s + f (v1°; 0; 0)] s, 

Ia (vlo t s) t s + 14 (wt0 t s) t s+ (j) (vt0; Wt0) c= 0, 

w~ = {01 + D2- [32rc I (A+ 64rr I 3)1(01 +D2 , s) s} 

X [2(A-32rrl3)r1 , (4) 

with the Yi (i = 1, 2, 3, 4) expressed in terms of 
the parameters of the theory. 

2. THE QUESTION OF THE EXISTENCE OF THE 
POLARON OF LARGE RADIUS 

To investigate the polaron states we must vary 
the functional (see references 7 and 8) 

.! !~I= (li2 12m')~ I v~ j2 d-r -~ ~p;o· (r;) =c T + U, 
Is 

P; = ed ~ w~l exp (iKr~), (5) 
K 

where m* is the effective mass of the electron, 
and D' ( r ) is the induction produced by the elec­
tron in the state with wave function 1/J. 

Inserting (1) into (5) and summing over l, we 
get, 

U =- ~ Ned ~w~il (K) D's(--- K), 
sK 

where N is the number of cells in the basic do­
main. In the case of states of large radius, D' ( r) 
is a smooth function of the coordinates. In this 
case the Fourier coefficients are small for large 
values of the wave vector and we can discard in 
Eq. (2) the terms with b ~ 0, thus getting 

U =-~Ned ~w<il (K)D'(- K). 
K 

We set, following Pekar, 7 

~ (r) = 1 (1 + ar) e-ar. 

This leads to 

J[~]=T0 a2 -U0 a3 , T0=3h2/14m*, 

437 e2d2 ( n~- 1 ) 2 
\ 

Uo= (i 792 1t)2 ----;;r J[lt(vj(s)j(s 

+ f (v; 0; 0) + (12 -- S2 I A) (sj{ s) t s] sdQ, (6) 

where dQ is the element of solid angle in K­
space, v is determined from the equation 

+ + + + 
Ia (v x s) x s -[-14 (s x s) x s + ip (v; s) = 0, 

and n0 is the index of refraction for waves of the 
largest wavelengths. 

The results from above fit qualitatively with 
the results of De'igen and Pekar3 and this indicates 
stability (or metastability) of the band state of 

the electron and also shows the absence of a po­
laron of large radius: J [ lf!] has a minimum at 
Q! = 0. 

3. INTERACTION OF THE ELECTRON WITH 
LATTICE VIBRATIONS AS A PERTURBATION 

The mobility of the electrons, in the crystal 
under investigation, is large. This shows that the 
interaction of the electrons with the lattice vibra­
tions is rather weak. This fact together with the 
absence of polarons permits one to consider the 
band electrons as the carriers and to consider 
their interaction with the lattice vibrations by 
perturbation-theory methods. The operator of 
this interaction is 

' 'VI,/ V = - .LJ Ps D (rs), (7) 
Is 

where D' is the intensity of the electric field of 
the electron. We introduce normal coordinates 
qO!(K): 

P~ = ed ~ q" (K) Wsa (K) exp (iKr;), (8) 
"K 

where a is the number of the branch of the spec­
trum of vibration. Inserting (8) and (1) into (7) and 
summing over l, we get 

v =- edN ~ qa (K) Wsrx (K) D~ (- K), 
SrJ.K 

' 41tie . '\,l K + 21th 
0 5 (K) = v- exp (- tKr) ~I K + Z1tn 12 

b 

X exp [i 2rrb (rs -- r)], 

(9) 

(10) 

where r are the coordinates of the electron and 
V is the volume of the basic domain. 

The probability of transition per unit time due 
to perturbation (9) is 

P a.'K' (p, na (K)] 

= ?; I (p, fla (K) IV I p0 , n°a (K)) j2 0 (£- £ 0 ), (11) 

where p0 and p are the quasi -momenta of the 
electron in the initial and final state; while n~ ( K), 
na ( K) are the corresponding numbers of phonons, 
with 

flrx (K) = n~ (K) + o<>K, a'K' ; 

E0 and E are the energies of the initial and final 
state. The reciprocal of the lifetime of the initial 
state is 
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1 
-= ~ P"-'K' (pn" (1\)] 
"ro 

=z; L;' ~ \F"'(-I)il\,p,po)j2/(no"'((-l)il\) 
P"-K ijl 

+(-I) 11 q"' ((-I )i 1\)i n~ ((-l)i 1\)) 12 o (E- £o), (12) 

where the prime means that the summation is to 
be taken over the half-space K, and 

(13) 

and up is the Bloch function normalized to unity 
for the elementary cell 1::!... 

The integral in (13) differs from zero only if 

1\ + (po -p)/n = 2rtb. 

The transitions for which b ~ 0 are the Peierls 
"Umklapp" processes. In the simple band model, 5 

in the case of semiconductors with not very high 
temperatures, these processes can be ignored. 
In this case, inserting (10) into (13), we get 

F ( v 0 ) ___ 4nie2d ~ (") ~ K + 2nb ( .2_b ) ",,,p, P - -~-LJ Wso: ., LJIK +L7tbl2 exp -l" r, 
s b 

X ZK, (p-p')/k ~ exp ( i 2rtbr) u; Up' de. 
(Ll.) 

For most electrons the difference p - p0 is small, 
therefore we can expand up in powers of this dif­
ference and retain only the linear factor. For 
b ~ 0 the integral can be ignored, as it contains 
a rapidly oscillating term. When b = 0 the term 
linear in p - p0 vanishes because of the central 
symmetry of the crystals under investigation, 7 

therefore the integral equals unity. So, 

4rtie2d wo:(K)s ., 
F"(l\, p, p0) = -"'- K (;K,(p--p')!"h· (14) 

If we normalize the amplitude according to Iaa = 
md2, (see reference 9, henceforth denoted by III), 
we get for the matrix elements in (12) 

I (n" / q"'l n" + I) I = I (n"' + I I q"'l n"') I 
= ~[n(ncz+ I)!Nmd2 w"')'l•, (15) 

where m is the atomic mass and wa is the fre­
quency of vibration of the a branch. Inserting 
(15) and (14) into (12), summing up over K, and 
passing from summation over p to integration, 
we get 

1 e• ~ l" I_ w,, (K) s 12 ,l o v " 
-::.<• = m.C1J,3 ~ \ --1;;-2--(K-) LJ fn"' (•,) - II"' (-1\)-- 2oitJ 

a J ' w-2 1 "--1.'2 

;< o [ E (p) - E (p0 ) - 1H''"' ( 1\) (l-2oil )] p2dpd!!., 

1\-- (p-p0)/li,£(p)=cp2/2m·•. (16) 

4. MOBILITY OF ELECTRON 

According to II, the frequency of light oscilla­
tions is a rapidly growing function of the wave 
vector, therefore the scattering of electrons by 
these vibrations is practically insignificant. 

In the case of acoustic vibrations the phonon 
energy can be ignored over a wide range of tern­
peratures .10 We can also ignore unity as com­
pared with n~ and put 

n~ (I\) = kT I 1i(ucz (I\), 

Using all these simplifications and integrating in 
(16) over p, we get for the reciprocal of the time 
of free p~th in the state p0, due to the scattering 
by the acoustical vibrations, 

_1_ = 4e• kTm' po 'V ~ I Wa (K) s !2 

t..1i• LJ dQ, 
"~c m a (ac) • K2w~ (K) 

1\ = (p- pO) I 1i, p = pO. (17) 

From II, we get for the acoustical vibrations 

(•)"' (I\)= fp.xC"' (s), r = em-'J. d-';,, 

where ?; a = fJ 2 I K is the solution of the charac­
teristic equation of the system (12,II), 

w"' (1\) s = p.2x2'F (s; v~"'), 

':F (s; v) == 2 ['h(v t s) 't s + f(v; 0; 0)) sj(A + 64rt/3). 

Inserting these results into (1 7) and averaging 
over the initial states of the electron, we get 

V3 e2 d2 (m' k)'" T' ;, 

r:"h• 

>< ~ ~G"(s)j'f(s;v~"')/2 dD.dQo. 
"- (ac) 

(18) 

The integration is performed here over all direc­
tions p0 (element of solid angle dfJ 0 ) and over 
all directions p. 

Since the limiting frequency of the optical vi­
brations wlim in the crystals under investigation 
is large, we can consider only the range T < 
nwlim /k in calculating the scattering of the elec­
trons on the optical vibrations. In this case the 
creation of phonons is practically impossible and 
the second term in the brackets of Eq. (16) van­
ishes. For all three optical branches we can put 

C•Jcz(l\) = Wlim• 11~(1\) = [exp(1icuiim/kT)-Ifl. 

Inserting this into (16) and integrating over p, 
we get 

___ 1_ = __ 2e4m* [ (p0) 2 + 2m' 1iwlim ]'I• )' \_I w"' (K) s 12 

~o m~1i"'"lim[exp(liwlimfkT)-1j ~ J 1(2 dQ, 
·opt o: tOPt) 

1\ = (p- p0)j1i, P2 = (p0 )2 + 2n( 1i(•Jlim · (19) 

From II we get for optical vibrations 
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w~ (K) s = ir..tx lRdxg(n~- I)] (v~,. ~ s) S, x0 = lloWHm/f, 

where R1 is a combination of theory parameters, 
which appears in (30a,II). Inserting this result 
into (19) and averaging over p0, we get approxi­
mately 

X ~ ~I (v~a "ts) S 12 dQdQo, 
a (opt) 

(20) 

where r is expressed in terms of the parameters 
of the theory according to (16,III). 

The mobility of the electron is 

U=-cejrn', 1/-r=l/-rac+l/-ropt• (21) 

According to (18), if we consider the scattering by 
acoustic vibrations only, we get for the tempera­
tur.e dependence of mobility the well known % law. 
But the scattering by optical vibration gives, ac­
cording to (20), a deviation from this law. 

5. NUMERICAL RESULTS. COMPARISON OF 
THEORY WITH EXPERIMENT. 

We represent u from (21), (18), and (20) in 
the form 

u = (m0 / rn')'lz (e I N 1m0 ) [T'/, + N2f (T)r1 , (22) 

where m 0 is the electron mass, 

f (T) = (21i(olim T 3kT)'I• [ex p (n(t)lim / kT)- 1 P, 

and the coefficients N1 and N2 are expressed in 
terms of a sum of integrals which appear in (18) 
and (20). These sums are calculated approximately 
in reference 11; the numerical values of the other 
parameters which enter in N1 and N2 are found 
in III. The numerical values of N 1 and N 2 are 
given in Table I. 

TABLE I 

I Diamond I Si Ge 

N1 ! 0.5-109 I 0.5-109 I 0 .. 5 ·109 

N. I 3.6-1010 1.3·1010 0.93·1010 

The presence of the term N2f ( T) in (22) 
causes a deviation from the % law. For room 
temperatures and below, this deviation is most 
remarkable for germanium, because although N2 

increases in the direction from germanium to 
diamond, wum also increases in this direction, 
and the latter is much more important. In the 
case of diamond and silicon, there was no devia­
tion in the experiment from the % law. 12•13 Accord­
ing to (22) these deviations should be insignificant 
for temperatures below 300° K. For germanium, 
according to the experimental data, 14 we can con­
sider u ~ T-1.65 in the temperature range 20 to 
300° K. Table II lists the values of the ratio 
TL65/F (T) [where F (T) = T3f 2 + N2f(T)] for 
germanium in the range of 25 to 300° K. This 
ratio remains practically constant in the range 
75 to 300°K (the experimental data are accurate 
to two significant figures; at this accuracy the 
ratio in the foregoing range is 1.9 ). For T ~ 50° K 
the ratio slightly decreases with decreasing tern­
perature. This is caused by the fact that for such 
low temperatures the optical vibrations play no 
role. For comparison, Table II lists also the 
values of the ratio T312/F (T), [which reduce to 
TL65 /F ( T) at 150° K]. It can be seen that 
T3/o/F(T) changes in the temperature range under 
investigation even in the second significant figure. 

In Table III the experimental values 12 •14 •15 of 
the mobility at 300° K are given together with the 
values of m * /m 0 calculated from the values of 
mobility, using (22). The results lie in the range 
of values which, according to the experimental 
data, m * /m 0 takes on for different directions in 
the crystal. 

TABLE lll. Computed values 
of effective mass 

' I 
I Diamond I Si Go 

-~ i I 

u, (cm2 /v sec)j 1800 I 1900 4000 
_,_n *..:.J_m_o ___ 0_. 6_9_,____0 ~_6_5 _..:._0. 44 

Therefore, the value of the mobility, calculated 
from the polarization that accompanies the lattice 
vibrations, is quite satisfactory. This opposes 
Shockley's point of view, 10 according to which the 
electric fields connected with the lattice vibrations 
are insignificant, as far as the interaction of the 
electron with lattice vibration is concerned. Ac­
cording to the results obtained above, the effect 
caused by these fields (which is the same as that 
caused by polarization) is almost the dominating one. 

TABLE ll. Temperature dependence of mobility in germanium 

T, o K 

yus IF (T) I 
T'I•JF (Tl 

300 

1.92 
2.16 

250 

1. 93 
2.10 

200 

1. 94 
2.04 

150 

1.94 
1.94 

100 

1.94 
1.84 

75 

1.89 
1. 76 

I 
oo I ~.-, 

1.80 11.62 
1.65 1. 4\1 
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5. CONCLUSIONS 

1. The interaction between the conduction elec­
trons and lattice vibrations of a homeopolar crystal 
can be investigated on the basis of the polarization 
due to these vibrations. 

2. In homeopolar crystals the band state of elec­
trons is stable (or metastable), and polarons of 
large radius should be missing. 

3. The method developed in this paper to calcu­
late the interaction gives correct results for the 
values of mobility and its temperature dependence. 

This gives grounds for believing that the inter­
action between the electron and the electric fields 
due to the lattice vibrations plays a significant 
role. 

The author thanks K. B. Tolpygo for a discussion 
of the results of this paper. 
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