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We have generalized the method developed in references 1 and 2, which is based upon Gibbs' 
method, to the case of diffusion in phase space. Starting only from the general rules of 
statistical mechanics and an assumption about the form of the averaged nonlinear macro­
scopic equation of motion for the system, we derive a general space-velocity equation of 
motion for the probability density. In the particular case of a linear law of friction this 
equation is the same as the well-known Einstein-Fokker-Planck space-velocity equation. 
For a system with a non-linear frictional force which does not depend on the coordinates 
in a uniform external field we obtain the general solution of the diffusion equation ob­
tained here. 

INTRODUCTION 

WE have shown in previous papers1•2 that one can 
derive by Gibbs' method not only the exact formulae 
of the theory of Brownian motion for fluctuations 
and correlations, 3•4 but also a general expression 
for the transition probability density in configura­
tion space, and also equations for this probability 
density in the case of essentially nonlinear sys­
terns. 

We shall show below that the general statistical 
method developed by us can also be applied to de­
rive a general equation of motion for the probabil­
ity density in the phase space of the coordinates 
and momenta (or velocities) for arbitrary non­
linear systems. 

To obtain such a diffusion equation it is suffi­
cient to make only an assumption about the form 
of the averaged macroscopic equation of motion 
for the coordinate and momentum of the particle 
and there is no necessity to introduce any assump­
tion about the correlations of the random forces 
or about the character of the stochastic process. 

TRANSITION PROBABILITY DENSITY IN PHASE 
SPACE 

Let Q (X) and P (X) be the generalized co­
ordinate and its conjugate generalized momentum 
of interest to us, where X is the totality of all 
canonical variables of the microsystem. We de­
note by W (Q, P, t; Q0, P 0, t 0 ) the probability 
density for a transition of the system from the 
state Q (X) = Q0, P (X) = P0 at the initial mo­
ment t0 to the state Q (X)= Q, P (X)= P at 

1234 

time t. The probability density for the equilib­
rium values of Q and P in a Gibbs ensemble 

w (X)= exp {['¥- H (X)] I A} 

will be denoted by W0 (Q, P). We have then, in 
accordance with reference 5 

1\7 (Q, P, t; Q0 , Po, fo) 

,= \ o {Q _ Q (XI)} 0 {P _ p (XI)} exp {['F'- H (X0)) I 8} 
j Wo (Qo,Po) 

(X') 

X o {Q0 - Q (X 0)} o {P0 - P (XO)} dXo, (1) 

where xt and X0 are the canonical variables of 
the system at times t and t0, which are con­
nected through the relations xt = x ( t; x 0, t 0 ) 

which are solutions of the dynamical equations 
• with a Hamiltonian H (X). From (1) we have 

clearly, for t = t 0, 

1\7 (Q, P, to; Qo, P 0 , f0 ) = o (Q- Q0 ) o (P- P 0). 

If initially, at t = t0, Q and P are given not 
exactly, but corresponding to some probability 
density p (Q, P) the probability density at an 
arbitrary moment t will be defined as 

1\7 (Q, P, t) 

~ ~ W(Q, P, t; Q0 , P 0 , f0 )p(Q0 , Po)dQodP0 

(Q,)(P,) 

= ~ o {Q- Q (X1)} o {P- P (X1)} 

(X') 

{ 1 0 l p { Q (Xo), P (Xo)} 0 
Xexp 0['¥-H(X))f Wo{Q(Xo),P(Xo)}dX. (2) 

Expression (1) is obtained from (2) for p (Q, P) 
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= o ( Q - Q0 ) o ( P - P 0 ) • Similarly to what was done 
in reference 1, Eq. (2) can be written in the form 

W (Q, P; t) 
+co 

=~ (2rtt2 ~~ exp [i (~Q + '1/P)] cp (~. 'f/; t) d~ d'fl, 
-co 

where cp is the characteristic function: 

cp(~. '1/; i)= ~ R{Q(X0), P(X0)}exp{-i [~Q(X1 ) 
(X') 

-;. 'fiP (X 1)] + -} ['P'- H (XO)]} dXo, 

R(Q, P)=p(Q, P)/W 0 (Q, P). 

(3) 

(4) 

(5) 

It is obvious that the moments of the distribution 
(3) can be expressed in terms of cp as follows 

e,;_mpn = im+n 0m+ncp 1 0~m07Jn 1~. 7)~o· (6) 

One can also give the funtions cp a different 
physical meaning. Let us introduce the quantity 

Z (a, b; t) = ~ R {Q (Xo), P (Xo)} 
(.\") 

It is clear that for a= i~®, b = i77® 

cp=e'f'1 8l. (8) 

In the integrand of Eq. (7) we can replace H (X0 ) 

by H ( X 7 ) because of the conservation of energy, 
and dX0 by dX7 by virtue of Liouville's theorem. 
We can then consider the expression 

w (X~;t) = ~ R {Q (XD), p (XO)} 

X exP{- ~ [H (X')+ aQ (X1) + bP (X1)J} (9) 

where we take into account that xt = x ( t; X 7 , T) 

and X0 = x(t0; X7 , T), as the microscopic proba­
bility density for some non-equilibrium p.rocess sat­
isfying the equation of motion for a phase ensemble: 

~: = [H, w]. (10) 

The moments taken over the ensemble (9) are 
obviously defined by the relations 

--a,b 
Qm pn (- 8)m+n am+n z 

z aam abn 

For a, b = 0 Eq. (11) is the same as (6). 
Differentiating Z with respect to t we get 

also the relation 

-;a,b . -;-a,b El az 
aQ ·;-bP --z7ft· 

(11) 

(12) 

We can thus evaluated cp and consequently also 
W if we know the moments (11) evaluated with re-

spect to the non -equilibrium ensemble (9). Any 
information about these moments can only be ob­
tained from a macroscopic experiment. A macro­
scopic experiment cannot give us, however, all 
moments, but only information about the change 
of the average values of Q and P in well de­
fined non -equilibrium processes or the averaged 
equations of motion for these quantities. The 
problem thus arises of determining the equations 
of motion for Z and then also for W from the 
macroscopic equations of motion for Q and P. 

THE EQUATION OF MOTION FOR THE PROB­
ABILITY DENSITY 

We shall write Eq. (9) for the microscopic 
probability density at time T = t in the form 

W (X1, f) o=. ~ R{Q (X0), P (XD)} 

X exp {- ~ [H (X1) + aQ (X1) + bP (X1)J}. (13) 

where X 0 =X (to; xt, t ). This expression can be 
considered to be the non-equilibrium probability 
for a phase ensemble which is formed from an 
equilibrium ensemble with a Hamiltonian H ( xt) 
+ aQ ( xt ) + b P ( xt) through a well defined fixing 
of the canonical variables xt at time t by a 
given function R { x (to; xt, t) } . 

If we take into account that the momentum P 
enters into the Hamiltonian H only in the form 
of a term P 2/2M, as usual, we can consider an 
equilibrium system with a Hamiltonian H + aQ 
+ bP as being under the action of an additional force 
-a+ Mb, since 

H T aQ _]__ bP '-~ H1 + P2 I 2M+ bP 1 aQ 

= H1 + (P -;- Mb) 2 ! 2M- Mb2 ,' 2 + aQ, 

and hence 

or 

(14) 

(15) 

If p = W0, i.e., R = 1, the ensemble (13) with 
the Hamiltonian (14) is an equilibrium one and the 
average values of Q and P, determined from 
(15) are therefore equal to zero. If however, 
p ~ W 0, the averages Q a,b and P a,b are, 
clearly, different from zero since such an en­
semble is not an equilibrium one. We shall de­
termine these averages from a macroscopic ex­
periment. 

Let the macroscopic equations of motion for the 
particle be of the form 

P F (Cl, ()) a, c)_,_ P 1 :\1-•- h, (16) 
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where F is the sum of an external force of the 
potential type and a dissipative force, which de­

pends in some arbitrary way on both Q and on 
Q. We shall assume that the motion averaged 
over the ensemble (13) is described by the Eqs. 
(16), i.e., 

• a,b ·--. a,b 
P = F(Q, Q) -a, 

--a b _a,b 
Q . = P [ M +b. (17) 

This is a natural physical assumption which is 
common t:o all theories developed s_o far, in any 
case for systems which are not too far from an 
equilibrium situation. 

Combining (11), (12), and (17), using a trans­
formation similar to the one used in reference 2, 
and introducing the velocity V = P /M instead 
of the momentum we get for W the equation 

aw + V aw 
at aQ 

1 a 00 (8/ M)n an [ an ] 
= M av n~o n! avn W avn F (Q, V) · (18) 

We have thus obtained a more general equation 
for the diffusion in coordinate-velocity space for 
a system with an arbitrary form of the macro­
scopic dissipative and potential forces. 

It is evident that the expression for the transi­
tion probability density W (Q, P, t; Q0, P 0, t 0 ) 

can be obtained as a solution of Eq. (18) with the 
initial condition W ( Q, P; t0 ) = o ( Q- Q0 ) o ( P- P 0 ). 

If 
F (Q, V) = K (Q) --i-- 1 (Q) V, (19) 

Eq. (18) goes over into the usual Einstein-Fokker­
Planck space-velocity equation of the form (see, 
e.g., reference 6) 

aw 1 v aw , K aw _ 1 a (V •v') , ,(j a2w at - - aQ -;- M av - .M av "' -- Ji12 ave · (20) 

In contradistinction to all known methods of de­
riving equations for the probability density, Eqs. 
(18) and (20) have been obtained by using only the 
general rules of statistical mechanics and a single 
assumption (17) about the averaged equations of 
motion. We have not made any assumptions about 
the Markov character of the random process or 
about the character of the correlations of the ran­
dom collisional forces. We have thus obtained 
Eq. (18) starting from the most general assump­
tions. 

THE GENERAL SOLUTION OF EQ. (18) FOR ONE 
PARTICULAR CASE 

If the external force and the frictional force do 
not depend on the coordinates, i.e., F(Q, V) = 

K + G (V), then Eq. (18), like Eq. (9) in reference 
2, can be integrated by quadratures. The corre­
sponding formula for the source function is of the 
form 

+ioo 

= (2rtif2 ~-~ exp {~ (p- v0) 2 - hs -v)2 

-<00 

s (p, a;') 

-r-~u·:- ~ d~/[GI(e)-+-a-KJ=O, 
p 

+oo 
1 (' e-<v-;)'2 GI(v) dv 

yz" ~ ' 
-00 

(21) 

where we have introduced the notation 

-r = t ;-J( M8, v = v -v M I 8, 

q = Q;8, GI(v) = G(vV8; M); 

the function s ( p, a; T ) is determined by the sec­
ond of Eqs. (21). 

Following the method given here one can easily 
obtain equations similar to Eq. (18) also for other, 
non-mechanical, physical systems by suitably 
choosing in each concrete case the generalized 
coordinates, velocities and forces. 
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