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A theory for large-radius excitons is proposed, which takes into account Coulomb as well 
as resonance interaction. A transition to continuum, made under certain assumptions, 
leads to an integro-differential equation that contains a nonrelativistic contact term. 

THERE are two limiting mechanisms for the travel will pertain to states which are completely filled 
of an exciton through a crystal. The first, indicated in the unexcited crystal, and <Pne will pertain to 
by Frenkel1 is due to the presence of resonance in- states which are completely free. The elementary 
teraction, and consists of the vanishing of the ex- cell may have a complicated structure; for example, 
citation at one point of the crystal and its occur- it may consist of a series of atoms and ions. We 
renee at a different point, while the width of the do not take spin interactions into account and con-
exciton zone, and consequently also the group ve- sider singlet states. Then the matrix element of 
locity of the exciton motion, remain finite as the the Hamiltonian H of the electron system will be 
overlap integrals tend to zero. The second mech­
anism enters into the Wannier-Mott theory of large­
radius excitons2•3 and consists of the displacement 
of an electron and a hole through the crystal; the 
electron and hole are considered as quasi-particles 
with a specified dispersion law, which describes 
the structure of a definite electron and a definite 
hole zone ( or a definite group of electron and 
hole zones ) . Therefore the width of the exciton 
zone tends to zero, when the exchange integrals 
that determine the width of the electron and hole 
zones become annihilated. The first mechanism 
of exciton displacement will be called "resonant," 
and the second "exchange." 

In the Wannier-Mott theory no account is taken 
of the ability of the electron-hole pairs of becom­
ing annihilated or created. Consequently, the de­
pendence of the structure of the exciton zone on 
the strength of the transition oscillator becomes 
lost, as do other features, and a contradiction with 
general theory4 arises as regards the structure of 
the exciton band in the vicinity of the point k = 0. 
In the present communication we introduce anni­
hilation terms in the large-radius exciton theory 
and consider the results therefrom. 

We consider a dielectric, and build up its elec­
tron wave function in accordance with the orthog­
onalized system of the Wannier quasi-atomic func­
tions. Let cppg and <Ppe be the Wannier functions 
corresponding to g-th and e-th orbits of the p-th 
elementary cell. Henceforth the functions Cflpg 

(pg, ne I HI p'g', n'e') = (pg I H1l p'g') One, n'e' 

~ J Hl J , , Mne, n'e' ne, n'e' + opg, p'g' (ne n e) + pg, p'g' + Kpg, p'g', (1) 

Here the symbol I pg, ne> denotes the anti-sym­
metrized wave function of the crystal, in which the 
electron has been removed from the orbit pg and 
transferred to the orbit ne, while the symbols 
I ne > and I pg > are the wave function of a crystal 
in which the orbit ne has an excess electron or 
the orbit pg lacks an electron; <ne I H1 1 n'e' > 
and <pg I H1 1 p'g' > are the matrix elements of 
the Hamiltonian of a crystal containing a zone 
electron or a zone hole, respectively. Integrals 
of the type like K::: and M::: will be called 
integrals of the Coulomb type or of the resonant 
type. 

In the quantum state, determined by the set of 
normalized excitation amplitudes {a~~}, the 
crystal energy is 

E [ {an•}] = "' ~ pg LJ ..:..! a~~ (pg, ne l HI p'g', n'e') a~'{. (2) 
nepg n'e'p'g' 

The contribution to the first two terms of rela­
tion (1) to the sum in the right half of (2) can be 
readily obtained by going over from the quasi­
atomic functions to the zone functions: 
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ike;= N-'J,~eikn / ne), I kg) = N-'1' ~ eikp/ pg) (3) 
n p 

( N is the number of elementary cells in the prin­
cipal region). Then, if we introduce the notation 

Hee' (k) = (ke / H1 / ke'), Hgg' (k) =(kg j H1 l kg'), (4) 

the sum of the two considered terms will be 

2} LJ, a~~ Hee' ( + V n) a~~+:~ ~ a~~ H gg' ( + V P) a~~·; (5) 
pg nee ne pgl\' 

the differentiation of a function of discrete argu­
ment aB~ is understood in the sense of differ en­
tiation of its representation in the form of a Four­
ier polynomial. 

As can be seen from (1), the quantities MB~:B;~, 
are large only when n and n' are close to p and 
p', and diminish exponentially with increasing 
I n - p I and I n'- p' I ; when n = p and n' = p' 
they go into the ordinary integrals of resonant 
interaction, which determine the structure of the 
exciton zones in molecular crystals. 1•5 On the 
other hand, these quantities decrease slowly with 
increasing I p - p' I and the character of their 
asymptotic behavior at large I p- p' I determines 
many effects that are connected with far interac­
tions. We shall therefore restrict ourselves* here 
to the expansion MBg;~~ in non-orthogonality in­
tegrals, which lead to the relation 

ne, n'e' -ne -nt! / n'e' n'e' ) M pg, p'g' = u pp' (Xpg, ;, Xpg, ij, . . . Xp•g•. ;, Xp•g•, ij .•• ), (6 

where 

X~~. i = V2~ tppg (r) (xi- P) cpne (r) d-r:, 

x~~· ii = V2~ tppK (r) (x,- p;) 

(7) 

where p = (p1, p2 , p3 ) is the position of the p-th 
elementary cell and Upp' ( ... I ... ) is the energy 
of the electrostatic interaction between a system 
of multipoles (dipole, quadrupole, etc.) located 

h · · h t -ne -ne t at t e pomt p, wit componen s Xpg,i• Xpg,ij e c., 
and a system of multipoles having components 
~g:, i• ~~.ij etc. at the point p'. Using (6), and 
also the fact that the translational symmetry allows 
us a choice of the amplitudes aB~ in the form 
aBg = N-112 a~ ( n -p, k) exp ( ikp), we find the 
third term of the right half of (2): 

LJ Upp' (X, [a], xli [a], .. ·I x, [a], 
p' 

X;i [a], ... ) exp {ik (p'- p)}, (8) 

*The effect of resonance type integrals with n = n', p = p' 
on the arrangement of the energy levels of the exciton was 
investigated by Moskalenko and Tolpygo. 6 

where 

Xi[aJ = ~~ a~(n-p, k)x~~.i etc. 
n-p eg 

These last quantities determine the matrix ele­
ments of the coordinates and of their products for 
a transition from the ground state into the exciton 
state with k = 0. For large-radius excitons they are 
considerably smaller than the analogous matrix ele­
ments in isolated atoms, and a simple estimate 
shows that in this case expression (8) has a smaller 
order of magnitude than expression (5), which is 
on the order of an electron volt. Therefore, in the 
greater part of the Brillouin zone, allowance for 
(8) leads only to small numerical corrections. 

The situation is quite different in the vicinity 
of the point k = 0, where, owing to the slow con­
vergence of the series, expression (8) becomes a 
non -analytic and even a discontinuous function of 
k. In this region the presence of integrals of the 
resonance type changes the dispersion law quali­
tatively. The singular portion of (8), which is of 
principal interest to us, can be segregated by 
going over to the macroscopic field; 7 the regular 
portion will be disregarded henceforth. In this 
approximation, (8) has the form, accurate to terms 
of order k2, 

4ne2 { 1 - i -"'Vfi2 ITTI X;[ a] Xj[a] k,ki- 1121 (X;[a] Xis[ a] 

-X; [a) Xis [a]) k;kjks + [21
1
21 Xti [a] Xst [a] 

- 1/ 31 (X; [a) Xist +X; [a] Xist [a])] k;kjkskt +· .. }. (9) 

Here v is the volume of the elementary cell of the 
crystal; repeated coordinate indices imply summa­
tion. The first term in (9) is in full agreement with 
the general result of Pekar.4 It can also be readily 
compared with the formula obtained in models that 
are essentially close to that of Frenkel. 8• 9* 

The matrix elements K. · · decrease exponen­
tially with increasing I p - p·, ·1 and I n - n' I, while 
the diagonal elements are the ordinary integrals of 
Coulomb interaction. Since we plan to consider 
large-radius states, in which the average distance 
between the electron and the hole exceeds consid­
erably the lattice constant, we expand K: : : in 
non-orthogonality integrals and retain only the 
first term 

ne n'e' ~ e2 

K pg', p'g':::::::::- One, n'e' Opg, p'g' Jn _ P / , 

corresponding to the Coulomb attraction between 

*An error in writing down the system of equations.analagous 
to (1) has crept into the paper by Wannier/ and led to a loss of 
the resonance-type integrals and of all the singularities due to 
the far-interaction effect. 
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the point charges, omitting higher terms that lead 
to the appearance of nondiagonal matrix elements 
and tensor forces. 

Inserting the resultant expressions into (2) and 
varying over the excitation amplitudes, we obtain 
an infinite system of equations, from which it is 
possible to determine in principle the wave func­
tions and the energy spectrum. In practice, how­
ever, it is more convenient to carry out a certain 
transformation, which facilitates further transi­
tion to continuum and to the effective-mass ap­
proximation. 

We use the representations lne> and lpg>, 
and denote by ane ( knv) and apg( kp1r) linear 
combinations of the wave functions of the zone 
electrons and holes, chosen to form an orthonor­
mal system and to depend analytically on kn and 
kp; in all other respects the choice of these func­
tions is thus far arbitrary. We expand the wave 
function of the exciton in a series 

a~~=~ c~~~an•(knv)apg(kp!t) (10) 

and construct the functions 

b:~ = ~ ~ c~~~ exp {i (nkn + pkp)}. (11) 
knkp 

We can then show that (2) is transformed into 

E[{b~~}] = ~ b:~Hvv'(-}vn)b;~ 
npvv'n 

+ ~ b;~ H mt' ( + V p) b;~. 
npmn' 

- LJ1 n~p 1 ~ ~a•(-} Vn, v)ag(-} Vp, Tt)b~~ 
np mv'7t' eg 

.. ·lx;·.~·.t(-} Vn'• ~ Vp·)b;;~., · ·.}. (12) 

where 

Hvv' (kn) = ~ a• (knv) Hee' (kn) a•' (kn v'), (13) 
ee' 

H""' (kp) = ~ ag (kp ~t)Hg"' (kp) ag>(kp 1r'), (14) 

""' 
x~~.t(kn k~) = 2;x:~.1a• (kn v) ag (kpJt) etc. (15) 

eg 

e (k ) V-N ne (k ) -tknn a 0 V = a 0 V e , 

(16) 

the differentiation operators that enter as argu­
ments into the functions ae, ag, ~~.i etc. act 
only on the function bB~· 

Relation (12) is the principal formula, from 
which the transition to the macroscopic theory 
should be carried out in the various cases. 

Let us consider one example. It follows from 
(9) that the greatest interest, from the point of 
view of the influence of the resonance mechanism, 
attaches to the investigation of the structure of the 
exciton zone near the point k = 0; on the other 
hand, in the effective-mass approximation, which 
we use here, we can describe only the states near 
the bottom of the exciton zone. We shall therefore 
assume that as we neglect the resonance interac­
tions the minimum of the exciton zone is located 
at the point k = 0. 

Let us denote by k~ and k~ the position of 
the bottom of the lowest electron zone E0, and 
the top of the highest hole zone E0• At the points 
k~ and k~, generally speaking, contact between 
several zones can take place. The functions 
ane(knv) are conveniently chosen such that some 
(the functions of the first group) belong to the 
linear envelope of the wave functions of the elec­
tron bands that make contact at the point of abso­
lute minimum, and the others (functions of the 
second group) belong to its orthogonal comple­
ment. Analogously, we choose and break up into 
two groups the functions apg( kp1r). If the radius 
of the exciton is sufficiently large, the predomi­
nant role in the expansion (10) is assumed by the 
functions of the first group, and the functions of 
the second group can be neglected. Henceforth 
the sums that extend only over the functions of 
the first group will be designated by primes. 

The bottom of the exciton zone is located at 
the point k = 0, only if the vectors k = l4 + ~ 
and k = 0 are equivalent. This can occur actu­
ally only when the bottom of the electron zone and 
the ceiling of the hole zone (or of an entire group 
of zones ) are located at the center of the Brillouin 
zone ( k0 = kg = k~ = 0 ) , or at one of the symmetry 
points on its surface (k0 = kg, k~). In the latter 
case we shall assume for simplicity that this point 
of the extremum is unique, i.e., that all the points 
to which it goes under the operation of the factor 
group and the operation of time reversals are 
equivalent to it. 

Introducing the smoothed functions 

B" ( ) i b"v 'k ( "n, p = 0 ""exp{-t 0 n+p)}, 

assuming that the zone-zone transitions at the 
point k0 are allowed, and confining ourselves in 
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the resonance terms to terms of zero order in k, 
we obtain, after varying over B~ (n, p) in the 
usual effective-mass approximation 

-~'v;;'Vn;VnJB~(n, p)-~'Drrrr',iJVp;VpJB;·'(n, p) 
~ ~ 

-, n~p I B;(n, p) + Ln dn' dp' B(n-p) 
V'1t' 

x[(r;(k0), Vp) (r~·(k0}, Vp·) IP~P'I] 

X o (n'- p') B~· (n', p') = ~~B~ (n, p), 

where 

(17) 

r~ (k0) = 2] r~~ (k0 k0} exp {ik0 (n- p)}, s = E- (£0 - E0). 

n 

The first three terms of the left half coincide 
with the Hamiltonian considered in reference 10. 
The coefficients nf( and D7r1r',ij determine the 
structure of the electron and hole zones near the 
extrema. The connection between the various co­
efficients, which follows from the symmetry of 
the crystal, can be found by group-theoretical 
methods. 11 •12 The last term is due to resonance 
interactions. Thus, introducing resonant inter­
actions into the theory in the approximation con­
sidered here leads to the appearance of a charac­
teristic contact term and to the transformation of 
the differential equation into an integra-differential 
one. 

To solve the equations of ( 17), which have the 
form of plane waves with quasi -momentum k, we 
have B~(p, p) = B~(O, 0) exp (ikp) and the con­
tact term assumes the form 

4TCe2 ~' v v' "'' liT L.J (rr. (ko). k) (rrr• (k0), k) Brr' (n, p) o (n- p). (18) 
v'n' 

Although the mean value of the contact term is 
proportional to (r0/r exz)3, where r 0 and rexz 
are respectively quantities on the order of the di­
mensions of the elementary cell and of the radius 
of the exciton state, this term should be retained, 
since it is connected directly with the macroscopic 
characteristic (the oscillator strength for a tran-

sition into the exciton state), and leads to a quali­
tative change in the law of dispersion near the 
point k = 0. In addition, the resonance term may 
split the degenerate levels. 

An investigation of the higher terms of the ex­
pansion in powers of k in resonance terms and 
the formulation of a law of dispersion in crystals 
with a different symmetry are outside the scope 
of this communication. 

For triplet states in a system of equations 
analogous to (1), there are no terms of the reso­
nance type, 13 •6 and consequently the usual form of 
this theory still applies to them. 

The author is grateful to S. I. Pekar for an 
evaluation of this work. 
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