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A theory is developed for the rotational states of odd nuclei whose ground state spin is due 
to the angular momentum j =! of the outer electron. The energy of the rotational states 
is obtained as a function of the parameter y ( 0 ::s y ::s 1r /3 ) which determines the deviation 
of the nuclear shape from axial symmetry. 

INTRODUCTION 

IT was shown by Davydov and Filippov1 that many 
properties of the first excited states of even-even 
nuclei (the order of succession of the spins of the 
excited states, their energies, and the probabilities 
for electromagnetic transitions between them) can 
be readily explained by assuming that the equilib
rium shape of the nucleus can in first approxima
tion be represented by a three-axial ellipsoid, 
which is characterized by two parameters, {3 and 
y (see the work of Bohr2 ). The relations 

Go= ~COSj, 

connect the parameters {3 and y with the quanti
ties all which determine the shape of the nucleus: 

2 

R (&, rp) = Ro + Ro lJ a11Y 211 (&, rp) 
!l=-2 

in a coordinate system attached to the nucleus. 
Changing the "asymmetry" parameter y from 
0 to 7r/3, with a fixed value {3, induces a change 
of the nuclear shape from a prolate to an oblate 
ellipsoid of revolution. The value y = 30° corre
sponds to an intermediate shape of the nucleus be
tween the prolate and the oblate ellipsoids of revo
lution. 

The possibility of departing from the axial sym
metry of the equilibrium shape of the nucleus has 
been investigated in the papers of Geilikman, 3 

Zaikin,4 and Davydov and Fillippov. 5 In the pres
ent paper we consider the rotational states of odd 
nuclei under the assumption that the shape of the 
nucleus is determined by the fixed equilibrium 
values of the parameters {3 and y, with the odd 
nucleon in a state with the definite total angular 
momentum j = ! . 

In keeping with the fact that we wish to consider 
the general case with arbitrary values of the pa
rameter y, we shall not assume that the projec-

tion of the total angular momentum h = Q is an 
integral of the motion. Instead, we seek exact 
solutions of the Schrodinger equation giving the 
rotational energy of the nucleus without neglecting 
(as was done in the papers of Bohr, 2 Bohr and 
Mottelson, 6 Davidson and Feenberg, 7 and others) 
the nondiagonal matrix elements connected with 
the different values of Q. 

In section 1 we obtain the energies of the rota
tional states of the nucleus for fixed parameters 
{3 and y. We show, in particular, that for y = 0 
the exact solutions coincide with the solutions ob
tained in the aforementioned papers with neglect 
of the nondiagonal matrix elements ofthe operator 
of the rotational energy of the nucleus. In Sec. 2 
we compare the theory with the experimental data 
for the nucleus w183 • 

l. ROTATIONAL ENERGY LEVELS OF ODD 
NUCLEI WITH THE OUTER NUCLEON IN 
THE STATE j = i 
We consider, as a model of the nucleus, a sys

tem consisting of a single outer nucleon in the 
state j = ! and a nuclear core with the shape of 
a three-axial ellipsoid. In other words, we as
sume that the core of the nucleus consists of nu
cleons belonging to filled shells as well as of 
"paired" nucleons of the outer shell, which are 
responsible for the deviation of the shape of the 
nuclear core from spherical symmetry. 

If I;\ are the projections of the total angular 
momentum operator on the three principal axes 
of the ellipsoid describing the shape of the nucleus, 
and h the corresponding projections of the total 
angular momentum of the outer nucleon, then the 
nuclear Hamiltonian which conserves the total an
gular momentum of the nucleon can, in the adia
batic approximation (neglecting the operator of 
the kinetic energy corresponding to changes of 
{3 and y) be written in the form proposed byBohr: 2 
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1 ., 2 

H =1i.2 (8B~2f1 ~ • 2 (( >..-}>.) a) +Hp+H;nt. 
). sm r- 'ItA I 

Here the first term is the rotational Hamiltonian; 
Hp is the Hamiltonian of the outer nucleon; 

Htnt = T~ {cos "( (3j;-/2) + V3 sin"( (} ~ -J ~)} 
is the Hamiltonian describing the interaction of the 
outer nucleon with the deformation of the nuclear 
surface. 

In the states with j =!, Hint= 0, and the ro
tational energy of the nucleus (without changes in 
the internal state) can be obtained from the eigen
values of the operator 

Hr = li2 (8B~2t1 ~(h-h.)2 /sin2(r-~t.. )· (1.1) 
). 

The wave function for the rotational state of the 
odd nucleus satisfying the symmetry conditions 
given by Bohr2 (invariance of the nuclear shape 
under rotations of 180° about each of the axes 1, 
2, and 3) and corresponding to the total angular 
momentum I of the nucleus can be written in the 
form 

~~=~II jK.Q)AKo, (1.2) 
1(,0 

where 

.f.K.Q (21+1)'/,{ DI +( 1)1-i DI } (1.3) I I > = ,~ 'Po MK - 'P-o M.-K • 

with 

K- .Q = 2v, v = 0, ± 1, ± 2, ± ... (1.4) 

The wave function cpg, in (1.3) determines the 
state of the outer nucleon with total angular mo
mentum j and projection Q; Dfu:K are irreduc
ible representations of the three-dimensional ro
tation group, which depend on the Eulerian angles 
specifying the orientation of the principal axes in 
space; K is the projection of the total angular 
momentum on the third axis of the nucleus, and 
M is the projection of the total angular momen
tum on the z axis of the fixed system of coordi
nates. 

Using the known values of the matrix elements 
of the operator (1.1) with respect to the wave func
tions cpg, and of the quantities nfu:K, we can 
transform the Schrodinger equation 

{Hr- E (/)} ~~ = 0 

to a system of linear, homogeneous, algebraic 
equations for the unknown coefficients AKQ· The 
rotational energy E (I) corresponding to the total 
angular momentum I of the nucleus is given by 
the secular equation for this system of equations. 

For I = i we conclude from (1.4) that there 
exists only one state with K = Q = i. The wave 
function for this state, 

<j~.1, = (8~t2)-'l• {'P•;, D'J.i,1, + 'P-•J.D'/.i.-•) (1 .5) 

satisfies the equation 

[Hr-E(l/2)l<jl•;,= 0, 

with E ( i) = 0. The function (1. 5) therefore cor
responds to the ground state of the nucleus. The 
spin of the ground state is i. 

For I=% formula (1.4) gives two possibilities, 
K = Q = ! and Q = i, K = -% . The wave function 
(1.2) will then be a linear combination of the two 
functions 

la/2• 1J2, 1J2, 1/2) = (2~tf1 {rp.,, D'!J,;, -- 'P-•;,D'/J.,-•;)• 

I%. 1J2,- 3)2, 1/2 > = (27tf1 {rp•;, D'!J.-•;,- 'P-•;,D'!J.J· 

The energy of the two rotational states belonging 
to the spin %. measured in the units ti2/B,B2, is 
given by the formula 

s1,~(%) = 9(1 +Y 1- 8/ 9 sin2 3r) /4 sin23"(. (1.6) 

For I = % the following values are possible 

K = .Q = 1/2; .Q = 1/2. K = -"/2; .Q = 1/2. K = 5/2 

and the wave function (1.2) is then a linear com
bination of the three functions 

l5/2. 1/2, 1/2, 1/2) =(3/8r:2)'1• {rp•;,D'f.;,1,+ 'P-•;,D'J.l,-•1,}, 

rs;2, 1;., -"h, 1/2 > = (3 I 8~t2)'/• {'P•;, D'J.l.-•;, + 'P-•J,D'/J. .• J' 
J %. 1/2, %. 1/•) = (3/8~t2)'1• {rp•;, D'JJ•;,.+ 'P-•;,DXf.-·J· 

The energy of the three rotational levels with spin 
I = % is determined by the cubic equation 

9e:• + 9 (9 + 2 sin23r) e _. 3 (27 + sin2 3r) 
sin23r . 4 sin43r 4 sin43, =0. 

The solutions to this equations for several values 
y are listed in Table I. 

In the same fashion one can show that the ener-

TABLE I 

10 15 20 25 30 

e:l(5/2) 1.000 1.018 1.074 1.175 1.331 1.547 1.708 
e• (5/2) co 65.91 16.78 7.682 4.525 3.131 2.646 
ea (5/2) 00 67.20 18.10 9.143 6.144 4.968 4.644 
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TABLE II 

y 0 0 jQ 1 15 1 20 zc, 30 

E1 e fz) 3.333 3.384 3.531 3.750 3.954 4.011 4.0 
&z(?h) 00 67.17 18.10 9.10 6.10 4.923 4.5 
<s (1 h) 00 68.54 19.42 10,62 8.066 7.802 8.5 
e, e /z) 263.9 67.05 30.63 17.98 12.30 10.0 
el(• /z) 3.333 3.382 3.531 3.750 3.954 4.000 4.0 
&z (9 /z) = 68.52 19.43 10.63 8.070 7.800 8.5 
<s (0 /2) 00 70:25 21.19 12.42 9.757 9.23 9.0 
e,(9 /z) 00 263:6 66.92 30.64 18.00 12.30 10~0 
e, ("I,) = 266.0 68.93 32.55 20.0 15.0 13.5 

gies of the levels with spins % and % are given 
by the solutions of equations of the fourth and fifth 
degree in E, respectively. The solutions to these 
equations for several values y are listed in 
Table II. 

It follows from (1.6) and Tables I and II that 
for y = 0 (axially symmetric nucleus ) the ener
gies of the rotational levels coincide (up to an 
additive constant)* with the energy values given 
by the formula (in our units t12 /~[32 ) 

s, = 1/ 6 {I (I+ I)- (-1)'-'1'(! + 1/2) + %}, 

of Bohr and Mottelson (reference 6, p 22) for an 
axially symmetric nucleus, neglecting the nondiag
onal matrix elements and assuming that Q = K = ! . 

The energies of the levels with spins % and % , 
as well as those with spins % and % , coincide for 
an axially symmetric nucleus. As y (i.e., the de
viation from axial symmetry) increases, the ener
gies of the levels of the axially symmetric nucleus 
are raised somewhat, while at the same time the 
remaining rotational energy levels with the same 
spin value come down from infinity. For y > 20° 
the energy spectrum becomes rather complicated. 
Several levels with the same spin value correspond 
to one and the same internal state. Before, these 
states belonged to different rotational bands. 

Figure 1 illustrates how the rotational states 
behave as y changes in the interval 10 to 30°. 

In Tables I and II we list the values of the rota
tional energy for various values y in the interval 
0, rr/6. The values of the rotational energy for 
values of y in the interval rr/6, rr/3 can be eas
ily obtained by noting that the equations (1.6) to 
(1.9) are invariant under the transformation y- y' 
= rr/3 - y. 

We therefore have the equation 

s(l, r)=s(/, rc,3--r). 

2. COMPARISON WITH EXPERIMENT 

Since we are employing a very idealized model 
(a core plus one outer nucleon in the state j = ! ) , 

*The rotational energies of the nucleus in the work of Bohr 
and Mottelson are not normalized to zero for the ground state. 

FIG. 1 

the results obtained can be applied only to a few 
nuclei with the spin i in the gr_ound state. The de
formed nucleus W183 apparently is such a nucleus. 
The right hand side of Fig. 2 represents the level 
scheme for this nucleus. 8 We indicate the spins 
and (in parentheses ) the ratio of each level energy 
of the first excited state of the nucleus ( 46.5 kev ) . 
The left hand side of Fig. 2 represents the theoret
ical level scheme calculated on the basis of the re
sults of the present paper with y = 27°. It is seen 
from the figure that the theory reproduces satis
factorily the energy levels and the corresponding 
spins. To get a fuller understanding of the agree
ment with theory, we shall calculate in a future 
paper the probabilities for electromagnetic tran
sitions between the rotational levels. Furthermore, 
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we shall extend the theory to the case where the 
outer nucleon is in states with an angular momen
tum j ~ 0. 

In conclusion I express my gratitude to G. I. 
Marchuk and A. I. Vaskin for the numerical solu
tion of the equations (1. 7) to (1. 9). 
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