
SOVIET PHYSICS JETP VOLUME 36 (9), NUMBER 5 NOVEMBER, 1959 

VISCOSITY IN THE HYDRODYNAMIC THEORY OF MULTIPLE PARTICLE PRODUCTION 

A. A. EMEL' YANOV 

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor December 7, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1550-1554 (May, 1959) 

The model of a viscous ultrarelativistic fluid is used to describe the dispersion of the 
meson -nucleon cloud produced in the collision of high -energy nucleons. An asymptotic 
solution of one-dimensional equations is obtained. It is shown that when viscosity is 
taken into account the angular distribution of secondary particles is less anisotropic 
than in the case of an ideal fluid. 

l. In Landau's hydrodynamic theory1•2 of multiple 
particle production in the collisions of high -energy 
nucleons the expansion of the meson -nucleon cloud 
is described as the dispersion of an ultrarelativistic 
ideal fluid. 

Although the theory agrees satisfactorily with 
experiment in general there are experimental in
dications that the angular distribution of second
ary particles is less anisotropic than is predicted 
by Landau's theory. 3 It is therefore of interest to 
investigate the expansion of the system using the 
model of an ultrarelativistic viscous fluid. The 
energy dissipation which occurs during the motion 
of a viscous substance is accompanied by increased 
entropy of the system. Therefore, in distinction 
from Landau's theory, additional particles are 
produced in the expanding meson cloud. 

The study of the dissipative processes from 
the hydrodynamic point of view leads to new pa
rameters - the phenomenological coefficients of 
viscosity, thermal conductivity etc. The kinematic 
coefficients could theoretically be calculated from 
a specific type of interaction in the meson -nucleon 
cloud; this would involve quantum-statistical av
eraging of the field operators and a hydrodynamic 
description of the interacting particles (see ref
erence 4, for example ) . However, since we do 
not know the real form of the interaction in the 
meson cloud at such high energies the indicated 
procedure is extremely tentative. In the present 
paper we therefore consider only the kinematic 
aspect of the problem; we assume the viscosity 
coefficient to have a given constant value inde
pendent of temperature and determine its influ
ence on the characteristics of an elementary act. 
The viscosity coefficient could be determined ex
perimentally by comparing the theory with experi
mental data. Two papers of Hamaguchi5•6 are con-

cerned with the role of viscosity in the hydrody
namic theory of multiple particle production and 
will be analyzed below. 

2. The equations of relativistic hydrodynamics 
which take dissipative processes (viscosity and 
thermal conduction) into account are as follows: 7 

aT~ 1 axk = o, ani! axi = o, (1) 

T;k = wu;uk + pg;k + 't;k, n; = nu; + v;. (2) 

Here Ui is the velocity 4-vector, which satisfies 
the relation uiui = -1; p is pressure; w = p + e: 
is the enthalpy density; e: is the energy density; 
n is the particle density; ni is the particle cur
rent vector; gik is the metric tensor (g11 = g22 = 
g33 = 1 , goo = - 1 ) ; 

( au; auk l auk l au; ) 
't;,k = - C1 k + -. + U;,U - 1 + UkU [ 

ax ax' ax ax I 

- ( c2-+ cl ) :~: (u;uk + g;h ); (3) 

V; =-+ ( n~ r [a~ ( r. ) + U;Uk a~ ( r. ) J. (4) 

t 1 and t 2 are the two (positive) viscosity coeffi
cients; c is the velocity of light (we shall let 
c = 1 ) ; T is the temperature; J.1. is the chemical 
potential; K is the thermal conductivity. The vis
cosity tensor satisfies the relation 7 

(5) 

For the expanding meson -nucleon cloud we as
sume with Landau that J.1. = 0. Since then Vi = 0 
thermal conductivity is absent from the Fermi
Landau system. Assuming furthermore e: = 3p 
for the equation of state, we obtain the equation5 

(6) 

for the tensor Tik· Equation (6) will always be sat
isfied if t 2 = 0, which we shall assume hereinafter. 
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We now consider the one-dimensional symmet
rical expansion of an infinite plane layer of thick
ness ~ in a vaccum with viscosity taken into ac
count. The equations in (1) are now represented 
more conveniently by3 

(7) 

We transform to the new independent variables t 
and z by means of 

x0 = t cosh z, x1 = t sinhz. (8) 

This is equivalent to a transition to a system of 
curvilinear coordinates in which the matter is al
most at rest. Milekhin3 has made successful use 
of this transformation in investigating the motion 
of an ultrarelativistic ideal fluid. Equation (7) is 
now written for arbitrary curvilinear coordinates 
through replacement of the ordinary derivatives 
by covariant derivatives: 3•7 

J_ ~ __:_ _i_ 8 [uk ( .!5_ _ ~ ul !_l!~<t) 
3 ox' ' 3 ox" 2 ox1 

1 ogkt 16 [ 1 a (V =gu1) ] 2 

+-2 --. 'tkl __ 9 Cut ,r- "t 
iJJI! y -g uX 

The tensor Tik must also be given in covariant 
form. 

(9) 

We assume that in the original coordinate sys
tem we have u0 =cosh T'f, !.!-' =sinh Tl· In the sys
tem represented by (8) the components of the 4-
velocity and metric tensor are3 

g22 = g 33 =I, gt" = 0 for i=l=k. (10) 

We assume furthermore that Tl' = T)- z ( Tl' will 
be denoted by T'f for convenience). The compo
nents of Tik in the variables t, z using (10), are 

0 _ i_,.. 'nh 2 [ 'nh ~ + cosh'Y) (I+~)] 
'to - 3 " Sl '1j Sl '1j ot t oz ' 

4 r h 2 [- 'nh O'fj cosh "l (I O'Y))l 
't1 = - - "COS '1j Sl '1j - + -- + -

1 3 at t , az ~ • 

1 4 r . h h [ cosh "l ( l iJ'YJJ' + sinh "l OYjl 'to= 3 "sm "l cos "l -~-·- + oz -t-lii_,' 

(11) 

After simple but laborious calculations (9) becomes 

1 oe 4 [ 'nh O'fl 1 ( d'fl)] 3 lii - 9 s1 2"llfi + T (cosh 2"1 - 2) \1 + ifi s 

= 196 c cosh "l [sinh"':;+ cos; "l (t + !; )r 
a-ro -ro a-r1 

__ o _ _1!_ _ ___2 + f'tll 
at t az ' 

1 oe 4 [ d'fl • ( d'fl).l 
3 az + 9 t (cosh 2"1 + 2) Ft + smh 2"1 I + az _ s 

2 

= - ~ Ct sinh [sinh ~ ' cosh Yi (1 + 0 "1 )) 
9 "l "l at 1 t az 

o-r~ -r~ o-r~ 
_Tt_t_Tz· (12) 

The solution of (12) will be sought for t » ~. We 
shall also assume 8T)/8z « 1, 8T)/8t < Tilt for 
T'f « 1, which will be justified by the subsequent 
solution. Equation (12) can then be put into the 
simple form 

Here T = ln ( t/ ~). In (13) sinh Tl and cosh Tl are 
expanded in powers of Tl but we retain only terms 
that are linear in T'f. The second equation in (13) 
shows that E depends slightly on z. Assuming 
z/ T « 1, we therefore obtain a solution for E 

which satisfies the initial condition E ,...., Eo for 
T"" 1: 

s = s0 [exp{-~ ('t + ;: )} 

It must be noted that (14) is an asymptotic solution 
which is correct only in order of magnitude for 
T"" 1 and Z"" T. 

The second equation of (13) now gives 

z 1 + y exp ( 4z2 I 3-r) 

'1j ~ :;- 2+ T "( exp {(-r + 2z2 I -r) /3}- 2j exp (4z•j3-c) · (15) 

It is thus evident that the assumptions 8T)/8z "" 1/T; 
8T)/ 8T < Tl are actually satisfied for z/ T « 1 and 
T»l. 

We now perform the new transformation of 
variables 

ot = 't + z, 
.XO + xr 

ot =In -A-, 

~='t-Z; 
.XO- xi 

~=In-A-, (16) 

which is equivalent to transforming to the custom
ary coordinate system ·used in references 1, 2, 5, 
and 6. The criterion for the use of our solution in 
the new variables will be the condition 0! "" {3; 
this corresponds to the region of maximum particle 
density in the case of an ideal fluid. 

The expression for the energy density becomes 
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s = s0 { exp [- } (ex + ~ - Vex~) J 

+ rexP[- at~] -rexp[-; Vex~ J}· 
The 4-velocity will be approximated by 

u2 = e2~ (xo +xi) I 2 (xo- xl). 

(17) 

(18) 

The first term in (17) is Landau's solution for an 
ideal fluid; the second and third terms take viscos
ity into account. It is interesting that in the region 
a "' {3 the energy density in the viscous fluid is 
greater than in the ideal fluid, whereas for the 
region of the most energetic particles, {3 "' 0, 
the energy density may be lower than in the ideal 
case. As a consequence the leading edge of the 
matter will disintegrate more rapidly (with 
smaller a for a given value of {3), and conse
quently the fastest particles will possess rela
tively lower energy, a smaller fraction of the 
particles will be emitted at small angles and the 
angular distribution of the produced particles will 
be less anisotropic. 

With very high viscosity, y "' 1, our solution 
is valid only in the region a ~ {3. For the exact 
form of secondary-particle angular and energy 
distributions we would have to solve extremely 
complicated three-dimensional second order par
tial differential equations. However, it can be 
maintained that the nondisintegrating part of the 
meson-nucleon cloud will be located in the region 
a "' {3, and since u2 "' 1 in this region all sec
ondary particles will possess approximately the 
same energy and their angular distribution will 
obviously be isotropic. The number N of mesons 
produced will be given by the formula of Rozental' 
and Chernavski1: 8 N "' Ec /i.J., where Ec is the 
nucleon energy in the center-of-mass system and 
J.l. is the mass of a pion. 

3. Hamaguchi5•6 also investigated the influence 
of viscosity on the principal features of multiple 
production as described by the hydrodynamic the
ory. However, his solution of the one-dimensional 
hydrodynamic equations is incorrect because of a 
number of mistakes, some of which we shall now 
discuss. 

In reference 5 the sought solution is expanded 
in powers of the small viscosity coefficient in 
order to solve the hydrodynamic equations for 
one-dimensional expansion. The Landau solution 
is taken as the zeroth approximation. By retaining 
only linear terms in the viscosity coefficient the 
author obtains a set of linear partial differential 
equations with variable coefficients as a basis for 

the given approximation. For the energy density 
Eo in the solution which neglects viscosity he as
sumes, as a quite rough approximation of Landau's 
solution, Eo = E6 exp [-% (a - {3)]. In addition to 
the fact that for the region of maximum particle 
density a "' {3 the expression for Eo is incor
rect, it must be noted that this approximation 
seriously neglects terms which are of the same 
order of magnitude as other terms left in the 
equations. The original equations contain the 
terms 8E0 /a~ and 8E0 /ax0 (here ~=x0 x'); 
it is easily seen that when E6 exp [ -% (a + {3 -
...fCii3)] (Landau's solution) is replaced by Eo 

the terms J;,.J {3/ a and J;,.J a/{3 are neglected 
compared with unity although both of these terms 
are of the order of unity for the important region 
Q! -{3. 

For the correction of 4-velocity u1 Hamaguchi 
seeks a solution in the form u~ = f1 ( x0 I~ )N, where 
N is a number selected to make f1 slightly de
pendent on x0 and ~ in the solution. However, 
[see Eq. (24) of reference 5], f1 is found to be ' 
always strongly dependent on its arguments. It 
can therefore be shown that any number greater 
than 4 can be taken for N instead of the value 
4.541 given by Hamaguchi. Since the value of N 
strongly affects the solutions the uncertainty of 
its value makes the solution somewhat arbitrary. 

In conclusion the author wishes to thank I. L. 
Rozental' for suggestions and assistance, and G. A. 
Milekhin and D. S. Chernavski1 for valuable discus
sions. 
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