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The problem treated is that of the elastic scattering of Dirac particles by a fixed spheric
ally symmetrical center of force. The values of the scattering amplitudes are found in the 
second Born approximation. 

IN a paper by Sokolov and the writers1 values of 
the scattering phase shifts o~1> and o~2 > for the 
scattering of Dirac particles by an arbitrary force 
center were found in second approximation in the 
interaction potential [see Eq. (23) of reference 1]. 

Using the following integral representations of 
the spherical Bessel functions: 

n 

i7 (kr) = 2!, ~sin (2kr sin f) cos f P, (cos cp) dcp, 
0 

1t 

it(kr)nt(kr)=- 2!, ~cos(2krsinf)cos ~ Pt(coscp)dcp, 
0 

we can put the expressions in question in the form 

1t 

tano}l> =- ~ ~ [1XP1 (cos cp) + ~Pt+I (cos rp)] L (cp) dcp 
0 

"" 
+ ( ~) 2 ~ ~ [1X2P 1 (cos cp) Pz (cos~) 

0 0 

+ IX~P1 (cos cp) Pz+1 (cos~) + IX~P t+I (cos cp) P t (cos~) 

+ ~2Pt+dcos cp) Pz+I(cos<jl)] M (cp, ~) dcp dtji, 

1t 

K \ tan '0)2> =- Cf .\ [1XPz (coscp) + ~Pz-1 (cos cp)] L (cp)dcp 
0 

"" 
+ ( ~Y ~ ~ [1X2P 1 (cos cp) Pz (cos~) 

0 0 

+ IX~P, (cos cp) P ,_I(cos <jl) + IX~P1_I(cos cp) P1 (cos~) 

+~2P1_I(coscp)Pz-dcosrfi)]M(cp, ~)dcpd~, (1) 

where 
00 

L (cp) = ; cos ~ ~ sin (2krsin n V (r) rdr, 
0 

00 

M(cp, ~)=~cos~ cos!~ cos(2krsin nV(r)rdr 
0 

r 

X ~sin (2kr' sin ! ) V (r') r'dr'. (2) 

The rest of the notation is that of reference 1. In 
particular, tik is the momentum, E = ctiK is the 
energy, and m = tiko/c is the mass of the particle. 

Assuming the phase shifts small, we set tan oz 
~ oz, and instead of the exact expressions for the 
scattering amplitudes f ( J.) and g ( J.) we content 
ourselves with the linear approximations 

00 

t (&)=k-I ~ [(l + 1) o)Il + l0)2>] Pz (cos&), 
l=O 

00 

g(&) = k-1 ~ ['0~1>- W>J P} (cos&), 
I=I 

where P} (cos J.) = -sin J. dPz (cos J. )/d cos J., 
and Pz (cos J.) is the Legendre polynomial. Sub
stituting here the values of oi1> and o~2 > from 
Eq. (1) and carrying out the summation over l by 
the use of Eqs. (8a)- (Be) of the Appendix, we get 

00 

t (&) = - ~k ~ ~ ~(c~) s ~ sin ( 2kr sin n v (r) rdr 
2sm 2 o 

2K2 \\ + 1ec•tizk .\.\ [1X2 +IX~ (cos cp +cos~) 
n 

(3) 

2K2 \\ [ s . + 1ec•tizk .\.\ .IX~ tan 2 (cos cp -t- cos~) 
n 

+ ~ 2 sin & l R-1M (cp, ~) dr.p d~, (4) 
.J 
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where the region n is defined by the conditions (9) 

and shown graphically in the diagram, and 

R = [ 1 - cos2 cp- cos2 cji- cos2 .& + 2cos cp cos cji cos .s-(•. (4') 

In the particular case of Coulomb scattering 
V (r) =- Ze2/r and 

c 1tl2e• 'P tjJ { ( • 'P ) M (cp, cji) = 8k cos 2 cot2 2o 2k s1n 2 

-o[2k(sin ~-sin nJ-o[2k(sin ~+sin nJ}· 
Using this, we can get the well known formula of 
McKinley and Feshbach (cf., e.g., reference 1) 
from Eqs. (3) and (4). If various special spheric
ally symmetrical charge distributions inside the 
nucleus are specified, one can calculate by numer
ical integration the deviations from pure Coulomb 
scattering caused by the finite dimensions of the 
nucleus. 

A particularly interesting case is that of high 
energies, for which one can neglect the rest mass 
of the particle in the Dirac equation in comparison 
with its total energy. This does not make any im
portant change in the picture of the scattering, and 
in the final results it affects only terms of the 
order ( mc2 /E )2• It can be shown that when the 
rest mass is neglected the phase shifts correspond
ing to a prescribed total angular momentum are 
exactly equal,2 i.e., op> = o~!>1 • In our case this 
can be seen directly from the expressions (1) and 
(2) if we set a = {3 = 1. Using this fact, one can 
easily show that when the rest mass is neglected 

( a, 
gur (.&) = tan 2) fur (.&), 

and the differential cross-section takes the form 

dcrur / dQ = sec2 (& /2) J fur(&) !2 , (5) 

where 
co 

f ) K cos2 ( ll/2) (' . ( . a ) 
ur (& = - c1ik sin ({i{2 ) J Sin 2kr Sin 2 V (r) rdr 

0 

2K2 \'\' + 1tC'1i.'k .)~ (1 +cos cp +cos cji +cos.&) R-1M (cp, cji) dcp d~, 
Q 

When we go to the nonrelativistic case we must 
set a= 1, {3 = 0, and we have from Eqs. (3) and 
(4) 

00 

fnr(&)=- c~kZsint;JIZ)~ sin(2krsin 1)V(r)rdr 
() ' 

+ 1t;~. k ~~ R-1 M ( cp, cji) dcp d~. 
n 
gn,(<&} = 0. (6) 

It can be shown that in the case of pure Coulomb 
scattering in nonrelativistic approximation the sec-

ond term in the expression (6) for fnr makes the 
contribution zero. This is in agreement with the 
fact that the classical Rutherford formula is exact 
within the framework of nonrelativistic quantum 
mechanics. 

APPENDIX 

By means of the formalism of the Dirac o 
function one can calculate a number of sums con
taining products of three Legendre polynomials. 
We construct a o function from the orthonormal 
Legendre polynomials: 

co 

.z; (z +}) P1 (cos w) P1 (cos&)= o (cos w- cos&) (7) 
l=O 

and set 

cos w = cos cp cos cji + sin cp sino/ cos I· 

Using the fact that 
1t 

~ ~ Pz (cos w) d1 = P1 (cos cp} P1 (cos cji), 
0 

we integrate Eq. (7) from 0 to 71'. Examination of 
the limits of integration and use of the fundamental 
property of the o function give the following value 
for the sum of products of three Legendre polyno
mials: 

co 

.z; (l + +) P1 (cos cp) Pt(cos o/) P1 (cos.&) 
l=O 

_ {1 I 1tR inside n, 
- 0 outside n, (Sa) 

where the region n is defined by the conditions 

cp + o/ + .& < 21t, cp + o/- .& > 0, 

-cp+<!J+&>O 

and has the shape shown in the diagram, and R is 
given by Eq. (4'). 

Using the well known recurrence relations be
tween the Legendre polynomials, we can get from 
Eq. (Sa) the values of the following sums: 
co 

.z; P 1 (cos cp)[(l + 1) P t+dcos <jl) + lP,_dcos o/) I P 1 (cos&) 
l=o 

= {2cos tjJ I 1tR inside n, 
0 outside n; (Sb) 

h [(/ + 1)Pt+l(costp}Pt+dcoscji) 
l=O 

+ LP t-1 (cos cp) P z-1 (cos cji)] P 1 (cos.&) 

= { 2cos & 1 1tR inside n, 
0 outside n. (Sc) 

Starting from the value of the sum 
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00 

~ [Pt+1 (cosw)- P,_1 (cosw)] P} (cos.&) 
1=1 

= 2sin .&o (cos w- cos.&), 

we can calculate by an analogous method the fol
lowing sums: 

co 

~ P1 (cGs q>) [P1+1 (cos ljl)- P 1_ 1 (cos~) P} (cos.&) 
1=1 

= {. 2 (cos cp- cos <Ji cos .9) 1 nR sin .9 inside n, (8d) 
0 JUtside f.!; 

00 

1=1 

p 1 ( .&) { 2sin {:1/ nR inside n, 
X 1 cos = 0 outside n. (8e) 
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