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Some angular azimuthal symmetry relations are obtained for cascades of reactions, of the 
type of triple scattering of protons; these relations follow from parity conservation in the 
reactions of the cascade. It is pointed out that experimental confirmation of the simplest 
of these relations, which is well known - the symmetry of the particles from the second 
scattering with respect to the plane of the first scattering - is not an exhaustive check on 
parity conservation. Experiments suggested here are a more thorough check of this law, 
and in some cases amount to a complete proof. 

IN the present paper the following azimuthal sym
metry relations are obtained. 

1. Suppose there is triple scattering by unpolar
ized targets (the incident beam for the first reac
tion is also unpolarized). If "parity is conserved"* 
in all the reactions, then the number of particles 
that undergo second scattering in the direction 
(J, r.p) and third scattering in the direction (J', r.p') 
is equal to the number of particles undergoing sec
ond scattering at the angles ( J, - r.p ) and further 
scattering (by a suitably placed target) at the 
angles (J', -r.p'): 

Cj},~(&', cp') = ~&.-q>(&', -cp'). (1) 

The angles J, r.p are measured in the following 
coordinate system: the z axis is along the direc
tion of the first scattering, and the y axis is per
pendicular to the plane of the first reaction. For 
the angles J', cp' the z axis is parallel to the 
direction ( J, r.p ) , and the y axis is perpendicular 
to the plane of the second reaction (for details see 
Sec. 3). 

The symmetry (1) is valid for any cascade of 
the type 

a+b-->c+d. (&o, Cfo), c+e-->f--j--g, (&, rp), 

f+h-->i+j. (&', rp'), (2) 

if the particles a and the targets b, e, h are un
polarized. a, b, c, etc. can be nuclei or "elemen
tary" particles (including y -ray quanta) with ar
bitrary spins. 

*We shall say for brevity that "parity is conserved" if: 
1) in the real three-dimensional space there is no distinction 
between a right-handed and a left-handed screw; 2) all the par
ticles taking part in the reactions have definite parities. 
"Parity is not conserved" if any one of these postulates does 
not hold. 

2. If "parity is conserved" in the reactions of 
the cascade 

a+ e1 -->a + e1, 

b + e2--> b + e2 , 

(&1, (h) 

( &z, 'f2) (3) 

with unpolarized beam a and targets b, e1, e2, 

the number of coincidences for counters of the 
twice-scattered particles a and b placed in the 
directions ( Jl> r.p d and ( J-2, r.p 2 ) must equal the 
number of coincidences with the counters placed 
in the directions ( Jl> - r.p d and ( J-2, - cp 2 ) : 

(4) 

Some of the reactions in the sequences (2) and (3) 
can be replaced by particle-decay reactions of the 
type a- c +d. For example, Eq. (1) holds for 
the cascade K- + n - ~- + K+, ~- - A + rr, 
A- p + rr, and Eq. (4) holds for the cascade 
rr- + p - ~- + K+, ~- - n + rr, K - rr + rr. 

The proposed experiments essentially serve to 
complete the set of experiments required to recon
struct the transition matrix ( S matrix) of the re
actions; this set is usually laid out on the assump
tion that parity is conserved. Of course, if any of 
these symmetries (or any already known) is vio
lated, then parity is not conserved. 

1. GENERAL FORMULAS 

Formulas are known in the literature that ex
press, in terms of the elements of the reaction 
matrix R = S - 1, the angular distribution of the 
products of the reaction of a polarized beam and 
polarized target, and also the polarization vector 
of these products (and if their spins are larger 
than ~, also the polarization tensors ) . 

Introducing instead of rectangular components 
of the spin vector the cyclic components, 
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cr_1 = (crx --i- icry)'}F2, cr0 = Ciz = ( 6 _ ~), 
cr+1 =- (crx- icry}!V2, 

we can write these formulas for the case of scat
tering of a particle with spin ! by a spinless par
ticle ( cf. references 1 and 2) as follows: 

+1 
I= } {sp RW + ~ P~" Sp R;,w} (5)' 

~=-1 

is the angular distribution for polarized incident 
beam; and 

+1 
P' ~·I = } { Sp cr~, RW + L; P~" Sp crT' R;TR+} (6) 

't=-1 

gives the cyclic components of the polarization vee 
tor of the scattered particles, for polarized inci
dent beam ("" denotes transposition). 

Let us write Eqs. (5) and (6) compactly in the 
form 

1 +q 
r' (&, rr; q'1:') = ~ ~ (q'"' I w (&, rp)J q1:) r (q, 1:), (7) 

Q=O T=-Q 

where p ( 0, 0 ) = 1 (one particle in the target and 
unit flux density of incident particles ) ; p ( 1, T) = 
p~n are the cyclic components of the polarization 
vector of the beam; p' ( J, cp; 00) = I ( J, cp) gives 
the angular distribution; p' (J, cp; 1 T') = p;.,(J, cp) 
X I ( J, cp); and 

(h'JW(&, q;)Jh)==: 1' 2 8pcrT'R(&, q;);~W(&, rp). (8) 

For any reaction a + b - c + d (the spins are 
arbitrary) a formula of this kind also holds (cf. 
reference 3, and also references 4- 6): 

~ (qc'tcqd'td J W (&, q;)J qa'taqb'tb) P (qa'taqb'tb); (9) 
qa'aqb'b 

(qc'tcqd'td I W (&, rp)lqa'taqb't!J) 

= [(2ic + I) (2id + I )]'I• [(2ia + 1) (2ib + I )r'l• 

X 
me m'c,md,m' d 

X(mc'm/iR(&, rp)l ma'mb')* (-J) 1a-m'a 

>< (iaiama- rna'/ qa"a) (- I )ib-m'b (ibibmb- m' b/ qb"b)· (10) 

Letters i denote the spins of the particles, 
m their z components, q the rank of polariza
tion tensors (for definition s.ee reference 4). In 
this general case the Clebsch -Gordan coefficients 
( iim - m' I qT) appear instead of the matrices a7 

of Eqs. (5), (6), and (8). 

There is an analogous formula for the decay 
reaction a- c + d (cf. reference 4): 

p' (&, cp; qc'tcqd'td) = ~ (qc'tcqd'tdj W (&, cp)l qa'>~a) P (qa Ya)• 
qava 

If the total angular momentum is conserved, 
then for the elements of the transition matrix of 
the reaction a + b - c + d in the representation 
of momenta and spin components we have the well 
known expression [cf., e.g., reference 9, Eq. (4)]: 

(pcncfld IRI Pananb) = N ~ y l'~J- 1 (&c,!fc) c::r;;cidmdc{,~,s'n' 

X (s'l' /RJI sl) cf:Inc::naibnb Yzl'-(&a. cpa). 
(11) 

N is a nor,rnalizing factor. The sum is taken over 
all indices that occur twice. In this formula all the 
quantities are referred to a single coordinate sys
tem zyx. 

In Eq. (10) and everywhere hereafter it is as
sumed that the spin components ma and mb of 
particles a and b are referred to a reference 
system A with the axis za II Pa· The y axis is 
chosen, for example, parallel to the polarization 
vector of a or b. The components me and md, 
on the other hand, are referred to the system C: 
zc II Pc, Yc II [PaPc ].4 Going over from the old z 
axis of quantization to the new axes za and zc, 
we get from Eq. (11) the following expression for 
the elements of R in the representation of these 
spin components:* 

(mcmd /R (.&, cp)J mamb) = ~ "" c•:mc-t:md cJmc+md 
1t' ~ tcmctdmd s'mc+md l'o 

s',l',J,l,s 

X [(21' + 1)(21 + l)]'f·(s'l' IWI sl) cJma+mb c~ma+_mb sma+mblO •ama•bmb 

X D~c+md,ma+mb (- n:, .&, !t- cp). (12) 

The function D is defined in reference 4. It fol
lows from Eq. (12) such elements of R do not de
pend on Pc and Pa separately, but on the Euler 
angles {- 71", J, 71"- cp } of the rotation that makes 
the axes A coincide with the axes C; J and cp are 
the spherical angles of the vector Pc relative to the 
axes A (cf. reference 4, Sec. 2). In addition, the 
dependence on cp is known: 

(mcmd /R (.&, cp)j mamb) 

(13) 

2. THE PARITY SELECTION RULE 

In Eq. (12) let us make the substitution 

D~c+md,ma+mb (- n:, .&, !t- rp) = (- I )ma+mb-mc-md 

*Analogous calculations are carried out in Sec. 2 of refer
ence 4 [derivation of Eq. (2. 7) from Eq. (2.4)]. 
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use the property 

Ccy = (- l)±c'+a'+bcc-y 
aab~ a-a b-B 

of the Clebsch-Gordan coefficients, and also use 
the well known expression of the law of conserva
tion of parity (cf. footnote*): 7fc7fd ( -1 )Z' = 
7fa'llb ( -1 )z. We finally get 

(mcmd IR (.&, rr)l mamb) 

(14) 

By the same method as in Sec. 1 of reference 5 
we get the corresponding relation for the coeffi
cients W: 

(qc'tcqd'td IW (.&, cp)J qa'taqb'tb) = (-1) qc+qd+qa+qb+'c+'d+'a+7 b 

X (qc- 'tcqd- 'td [W (%, - <:p)[ qa- 'taqb- 'tb). (15) 

The components are referred to the directions of 
the respective relative momenta Pc and Pa· 

This "selection rule" was first obtained by Chou 
Kuang-Chao7 in a different formulation. L. G. 
Zastavenko has pointed out that it is completely 
equivalent to the rule "v0 + Vd + va + 1Jb even" ob
tained in reference 4. For decay reactions a-
c + d we have an entirely analogous relation; we 
have only to remove the labels % and 1b in 
Eq. (15). 

Since the dependence of W on ·cp is known 
[cf. reference 5, Eq. (6)] both sides of Eq. (15) 
can be divided by exp {i (Ta + Tb) cp}, i.e., with
out any loss of generality we can set cp = 0 in 
Eq. (15) [and Eq. (14), see Eq. (13)]. 

Taking the complex conjugates of both members 
of Eq. (10), and noting also that (iim -m'l qT) = 
(iim'-mlq-T) and (-1)-m' = (-1)7 -m, we 
get 

X (qc- 'tcqd- 'tdl W (.&, 'P)I qa- 'ta qb- 'tb)· (16) 

From Eqs. (16) and (15) there follows one more 
formulation of the parity "selection rule" 

(qc'tcqd'td JW (.&,0)[ qa'taqb'tb) 

= (- I )qc+qd+qa+qb (qc'tcqd'td I W (.&, O)l qa•aqb'tb) *, (17) 

i.e., the coefficients W (J, 0) are purely real if 
q0 + qd + ~ + % is even, and purely imaginary if 
this sum is odd. 

3. DERIVATION OF THE AZIMUTHAL SYMME
TRIES 

Let us express the above selection rule in terms 
of properties of the angular distributions that are 
directly observable in experiments. 

If a and b in the cascade (2) are unpolarized, 
then 

(if the flux density of the incident particles is unity 
and there is one target particle ) . The polarization 
tensors of particle c (we do not concern ourselves 
with particle d ) are then independent of the azi
muthal angle cp 0 and have the property (cf. refer
ence 4) 

Po (.&o; qc'tcOO) = (qc'tcOO I Wo (.&o, 0) 10000) 

= (- I )qc+'cp0 (&0 ; qc- 'tcOO). (18) 

In order to find the polarization tensors of the 
product f of the second reaction of the cascade 
(2), we have to substitute in Eq. (9) the polarization 
tensors Po of particle c, referred to the axes C 
belonging to the initial state of the second reaction 
(stationary relative to its center of mass). But 
the tensors (18) are referred to C0, the axes be
longing to the first reaction (stationary relative 
to the center of mass of the first reaction). To 
bring the axes c0 into coincidence with the axes 
C it is enough just to rotate the axis zc0, par
allel to the momentum Pc. around Yeo by such 
an angle a that it becomes parallel to the direc
tion p~ of this momentum in the laboratory sys
tem (we note that this direction is the same as its 
direction in the center-of-mass system of the sec
ond reaction, since the target e is at rest). 

Therefore 

We now insert in Eq. (19) instead of Po (J0; q0 T0 ) 

the quantities ( -1 )qc+Tc Po ( J0; q0 - Tc) which 
are equal to the former quantities by Eq. (18), 
change the sign of the summation index, Tc-- T 0 , 

and use the relation 

We find in this way that Po has the same prop
erty (18) as p0• And in general rotations of the 
sets of axes belonging to the products of a reaction 
around the perpendicular to the plane of the reac
tion do not change the formulation (15) of the parity 
selection rule. 

The relativistic spin rotation9 is also applied 
around the perpendicular to the plane of the reac
tion. We can assume that a already includes the 
angle Q of this rotation, and therefore the azi
muthal symmetries obtained in what follows will 
be relativistic results. 

Thus we have for the polarization tensors f 
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p(%, rp; qrrrOO) 

= ~ (qrrrOOIW(&, rp)lqcTc00)ro(&0 ; qc"cOO)-l, 

if the target e is unpolarized (so that p ( qe T e ) 
= 1· oqe,o ). Since Tc ranges from - qc to +qc, 
we can replace the summation index T c by - T c 
(regrouping of the terms of the sum). Then ap
plying Eq. (15) and for brevity not writing out the 
indices q and T when they are equal to zero we 
have 

p(&, rp; qt"r)=(-I)qt+Tt ~ (qr-"riW(&, -rp)lqc"c) 
qc -rc 

xro(&o; qc"c) =(-J)qt+Trp(&, -rp; qr-"r)· 

Use has been made of the equation ( -1 )qc+Tc 
x (- 1 )qc+Tc = 1. The angles J, cp are measured 
from the respective axes zc II Pb; Yc II Pax Pb· 

In particular, for qr = 0 we get a ( J, cp ) = 
(J, -cp ), i.e., symmetry of the angular distribu
tion of the products of the second reaction with re
spect to the plane of the first reaction. 

For the polarization tensors of the products of 
the third reaction we get in the same way, if the 
target h is unpolarized: 

p'l),<p(&', rp'; q;";qi"i)= ~ (q;";qi"iiW'(&', cp')[qr"r) 
Q{Tf 

X ~ (qt"f I W (&, 'P)I qc't"c) (qc't"c I Wo <&o, 0)1) 
QcTc 

= (-I)Qi+Ti+qj+Tj p'l),-<p(&', -rp'; q; -'t";qj- 't"j)• (20) 

The indices J, cp on p' mean that the particles 
f incident on h are those that emerged at the 
angles J, cp with respect to the axes (j of the 
second reaction. The angles J', cp' are measured 
relative to the axis system F: zf is parallel to 
Pl. the momentum of f in the laboratory system, 
and y f II p~ x Pl· In particular, for the angular dis
tribution in the third reaction we get the symmetry 
(1). The extension to cascades with an arbitrary 
number of reactions is obvious (all the azimuthal 
angles cp in the right members of the equations 
are replaced by - cp ) • 

In establishing the symmetry (1) we have used 
out of all the relations (15) only those of the form 

(qc't"c 00 I W (&, rp)[ qa't"a 00) = (- I )qc+qa+Tc+Ta 

X (qc -'t"c00 jW(&, - rp)j qa -'t"a 00), (21) 

where qc, ~ take the values 0, 1, ..... 2ic and 
0, 1, ..... 2ia, respectively. 

Some of the other relations of Eq. (15) are used 
in proving the symmetry (4). In our arguments so 
far we have not been concerned at all with the sec
ond products of the reactions. But the common 

origin of the products of the reaction a + b - a + b 
makes the angular distributions of the particles a 
and b after second scattering correlated (regard
ing the correlation of the polarizations cf., e.g., 
reference 8 ) . Namely, let us select among all the 
particles a after their first scattering only those 
that emerged together with particles b that have 
undergone subsequent scattering in the direction 
J2, Cfl2· The angular distribution a(J1, cpt) from 
the second scattering of this subensemble of par
ticles a will depend on J 2 and cp 2 as parameters. 
The selection is made by the usual method of coin
cidences. For this joint angular distribution of the 
second scatterings we get by using Eq. (15): 

cr (&1, tfl1; &z, Cflz) 

~ (IW1 (&1, Cfl1)j qa't"a) (JWz (&z, tp2)[ qb't"b) 
QaTaQ b'<b 

By the same method we get for the cascade 

a+b-+c+d, c+e-+f+g, (&, rp) 

f+h1--i1+j1, (&1 1
• :Pl') 

g + hz-+ i2 + jz, (&2', 'P2') 

with unpolarized a, b, e, h1, h2 the result 

(22) 

~the comparison is made between the numbers of 
coincidences in the last reactions of the cascade). 

Since the azimuthal angles cp do not change 
when transferred from the center-of-mass system 
to the laboratory system, we can suppose that the 
azimuthal angles in Eqs. (1), (4), and (22) are those 
of the momenta of the particles in the laboratory 
system. We can also insert the polar angles of 
these momenta ( referred to the same axes zc 
and Zf) instead of J and J', which were defined 
as the polar angles of the momenta Pf and Pi in 
the respective center-of-mass systems (i.e., in
stead of the numbers J and J' we can insert the 
corresponding numbers .9-z and J[). Thus J, cp 
and J', cp' in Eqs. (1), (4), and (22), for example, 
can be taken to be the spherical angles (measured 
in the axes C and F, resp'ectively) of the particle 
tracks directly observed in a chamber or emulsion. 

The proof of the symmetries (1), (4), and (22) 
for cascades involving y -ray quanta or for cas
cades including reactions of decay of one particle 
into two particles is obtained in just the same way 
(all formulas and relations needed for the proof 
in cases involving neutrinos and photons are con
tained in reference 6 ) . 
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4. THE TEST OF PARITY CONSERVATION AND 
THE AZIMUTHAL SYMMETRIES (TRIPLE 
SCATTERING OF PROTONS BY SPINLESS 
TARGETS) 

Let us now pose the inverse problem: how one 
can experimentally test "parity conservation" in 
a given reaction. Strictly speaking, one must check 
all of the relations (14).* The validity of only part 
of them could be either accidental or due to some 
other symmetry property of the interaction (ex
amples below). 

The summetry u ( J, cp) = ( J, - cp) is a conse
quence of only part of the set of relations (15): 
(0000 i W (-S, rp) I qc-rcOO) 

(23) 

Conversely, if this symmetry has been con
firmed experimentally and it is suggested that the 
relations (15) hold for the coefficients w0, then 
for the reaction c + e - f + g no more is verified 
than this part of the whole set of relations (15) 
(more exactly, 2ic relations ) . The number of the 
relations (21) is considerably larger, and for this 
reason alone we can expect that a check of (1) is a 
more thoroughgoing test of parity conservation. It 
can be objected, however, that since not all of the 
relations (15) are independent (see note*) it is not 
excluded that Eq. (23) may contain just the same 
number of independent relations as Eq. (21). Our 
assertion that Eq. (1) gives a more complete check 
of parity conservation that just symmetry with re
spect to the plane of the first reaction will now be 
proved by a concrete analysis of a cascade of three 
very simple reactions of the type of the scattering 
of a particle of spin ~ by a spinless particle (for 
example, triple scattering of protons by helium 
targets). 

The scattering matrix ( m' I RIm) ( m' and m 
refer to different axes; cf. Sec. 1) has in this case 
just four elements: 

( e12 I R(&, 0) l 1/2) (1,2 I R(&, 0) I - 1/z)) 

(- \'2 I R (&, 0) I 1/2) (- 1/2 I R (&, 0) l - 1/2); 

= ( a b ). ( Aei~ Bei~ ) 
- c d CeiY De's · {24) 

A, B, C, D :;:: 0 and 0 ::s a, (3, y, 6 ::s 21r. 

*All of these relations are independent. If all of the spins 
ic, id, i8 , ib, or two of them, are half-integral, there are in all 
¥2 (2i 8 + 1) (2ib + 1) (2ic + 1) (2id + 1) complex relations (14), 
or twice that many real ones. If all the spins are integral, 
the n~m~er _of ~eal relations is smaller by one if "6 "J'" 8 "b ~ 
(- 1r1c-"d+ta +tb, and is larger by one if this relation does not 
hold. The number of the relations (15) is larger than the num
ber of the relations (14), and therefore not all of the set (15) 
are independent. 

The relations (14) (with cp set equal to zero) re
duce to just two complex equations, a = d, b = - c, 
if the product of the intrinsic parities of the par
ticles does not change {as in an elastic reaction), 
or a = - d, b = c, if it does change sign. 

According to Eqs. (5)- (8) of Sec. 1 we find the 
expressions for the coefficients ( q'T' I W { J, 0) I qT) 
that we shall need in terms of the elements (24): 

(I - I I W I 00)- (- I I W J) 

(25) 

(00 ! W I I - I)- (l W I - I) 

{26) 

(I-ll wil-l) 

-(-I I W I -I)= ADeiC-~+8>, (27) 

(1-1 I W I I+ I) 

-(-1 I WI+ I)= -BCeiC-HY>, (28) 

(I- I I W I 10) = [ACeiC-x+y)- BDeiC-Ho>] rV2: (29) 

Using Eq. (16), we can write the angular distri
bution of the second scattering in the form 

1 

~ (&, cp) = lJ (I W (&, 0) I qO) Po (qO) 
q=O 

+2Re (I W(&, 0)11-1) p0 (I-I) cos cp 

+ 2Im (I W (&, 0) I 1- I) Po (I- !)sin cp. {30) 

To simplify the further analysis we assume that 
Eq. (15) holds for the coefficients W0 of the first 
reaction and W' of the third, i.e., in this sense the 
first reaction is the polarizer and the third is the 
analyzer.* Then if for even a single value of cp = 

cp 0 ~ 0 one finds that u(J, cp 0 ) = u(J, -cp0 ), this 
means that Im ( I W 11 - 1 ) Po ( 1 - 1 ) = 0, and thus 
Re ( I W 11 - 1 ) = 0, since Po ( 1 - 1 ) = ( 1 - 1 I W o I ) 
is purely imaginary by hypothesis. As can be seen 
from Eq. (26), the equation Re (I W 11 -1) = 0 
means the existence of a single restricting relation 
between the elements of the matrix R, t Re (a *b + 
c*d) = 0, from which one cannot get the four rela
tions a= d, b =-c. In fact, we can point out the 
following simple possible symmetry properties of 
the interaction that have the same character as the 

*More complicated experiments (with rotation of the spin 
between the successive scatterings) would clearly make it 
possible to test parity conservation without this simplification 
(and provide us with polarizers and analyzers). 

tOr between the coefficients K, L, M, N in the expression 
R ~ K + L(u• p' xp) + M (a· p') + N (u • p) (cf. references 1, 2); 
that is, the symmetry a(&, cp) ~a(~.- cp) can exist even when 
R contains both scalar and pseudoscalar terms. 
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law of parity conservation and "imitate" it in the 
sense of making the quantity Re (a*b + c*d) van
ish. 

1) Apart from sign, the probability amplitude 
for the transition from the state with spin compo
nent +! along the direction of the initial momen
tum to the state with spin component +! along the 
final momentum is equal to the amplitude for the 
transition from i to -! (or, a = ±c). The tran
sition amplitudes ! - - ! and - ! - - ! are also 
equal (or b = 'Fd). 

In these terms the law of parity conservation is 
expressed as the equality (apart from sign) of the 
transition amplitudes + i - +! and -! - -! 
(a = ± d ) , and +! - - ! and - ! - +! ( b = 'F c ) . 

2) a = ± id, b = 'F ic - the amplitudes for the 
corresponding transitions are equal, but unlike 
the case of parity conservation they differ in phase 
by rr/2. 

Doubts of parity conservation mean, in particu
lar, that it is to be regarded as one of various pos
sible symmetry properties (and on an equal footing 
with them). Only further experiments can show 
which of these properties exists in reality. One 
such experiment can be a test of the symmetry (1) 
in triple scattering. Let us write UJ.cp ( J.', cp' ) in 
a form analogous to Eq. (30) [cf. Eq. (20)]: 

cr&,tj>(&', rp')=f(&', &, &0)+2pw~{-lm(-ll W/)cosrp' 

+ Re (-1 I W i) sinrp'} + 2w'p1{- Im(i W I- I) cosrp 

+Re(fWI-l)sinrp}-2w~pdRe(-ll W 1-1) 

xcos(rp'+rp)+Im(-11 W 1-l)sin(rp' +rp) 

+Re(-1 I WI+ l)cos(rp'-rp) 

+Im(-11 WI +l)sin(rp'-rp)}, (31) 

where 

w'=(OO 1 W'(&', 0) I 00), iw~~(OO I W'(&', 0) Il-l). 

On verifying that Eq. (1) holds at four points 
(cp', cp), for example (0, rr/2), (rr/2, 0), (rr/2, 
rr/2), ( rr/2, - rr/2), we get the results 

Re(-1 I WI)= Re(J WI -I) =0, 

Im(-1 I w 1 -1)=1m(-I I U7 I +1)=0 

or [cf. Eqs. (25)- (28)] 

AD sin (cx- o) = 0, BC sin(~-'\')= 0, 

AC cos (cx- '\') + BD cos(~- o) = 0, 

AB cos (cx- ~)+CD cos('\'- o) = 0. (32) 

In addition to the "parity conservation" solu
tions a=d, b=-c, and a=-d, b=c, Eq.(32) 

also has several other solutions (for example, so
lutions with one or two of the parameters A, B, 
C, D equal to zero). 

Strictly, an additional solution is needed to elim
inate these other solutions. They all make the real 
part of the coefficient (29) vanish (which does not 
follow at all from parity conservation). If after 
the first reaction the polarization vector is sub
jected to a rotation (by a magnetic field, for ex
ample) around [ Pc x p z] p~ so that its component 
in the direction of the first scattering, Po (J-0; 1 0 ), 
becomes different from zero, then there is added 
to Eq. (31) a term 

2p0 (&0 ; IO)w~ {lm(l-1 I WI !O)cosrp' 

+Re(l-1 I W IIO)sinrp'}. 

If this destroys the symmetry (1), then Re ( 1 -
11 W 11 0) ~ 0 and there remain the two "parity 
conservation" solutions. Since the intrinsic pari
ties of the particles are not involved in Eq. (15), 
one cannot find out from the azimuthal symmetry 
whether or not the product of these particle sym
metries changes. 

We note that if parity conservation is established, 
this at the same time will have the meaning that for 
the elastic scattering of a particle of spin ! by a 
spinless particle there is invariance under time 
reversal.2 

In conclusion I express my gratitude to B. N. 
Valuev for a discussion of this work. 
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