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A simple derivation is given of the integral representation for the causal commutator dis­
covered by Jost and Lehmann1 and generalized by Dyson,2 which does not require the use of 
six dimensions. In the simpler cases (vertex part, two-particle matrix element) more de­
tailed spectral formulas are found. On the basis of these formulas it is shown that the two­
particle scattering amplitude -for real values of the energy in the center-of-mass system 
- is an analytic function of the square of the momentum transfer regular in the entire com­
plex plane except for poles and cuts on the real axis. 

l. Jost and Lehmann1 discovered an integral rep­
resentation for the matrix element of the causal 
commutator of two Heisenberg operators A and B 

f(x)=(p, r![A(x/2), B(-x;2)Jip',r'), (1) 

where I p, r > is the state characterized by a total 
momentum p/1-, and r denotes all other quantum 
numbers. However the representation for f ( x) 
which they found was not manifestly covariant and 
was rigorously valid only in the symmetric case 
(A = B ) . The generalization to the nonsymmetric 
case was carried out in an invariant form by Dyson2 

by introducing six dimensions in momentum space. 
The main results of the present work consist 

showing that the general four-parameter Jost­
Lehmann-Dyson representation for f ( x) can be 
made substantially more specific in the simpler 
cases and that it reduces to a two- and three­
parameter representation respectively for the 
vertex part (when one of the states in (1) is the 
vacuum state and the other is a single -particle 
state) and the two-particle matrix element (when 
both states in (1) are single-particle states). Fur­
thermore, a simple derivation of the general rep­
resentation for f (x) is given, without recourse 
to six dimensions which, it seems to us, need­
lessly complicate the proofs. 

The three-parameter representation for the 
two-particle matrix element permits a significant 
increase in the region of regularity of the scatter­
ing amplitude as a function of the momentum trans­
fer .6.2 as compared to the region found by Leh­
mann;3 namely it is possible to show that the scat­
tering amplitude (for real values of the energy in 
the center of mass system) is an analytic function 
of .6.2 regular in the entire complex plane except 
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for poles and cuts on the real axis. 
It should be emphasized that we have not as yet 

succeeded in demonstrating the necessity of the 
limitations on the spectral function in the three­
parameter representation of the matrix element 
for the scattering of two particles. 

For the sake of simplicity we ignore the spin 
dependence of the matrix elements in the follow­
ing. 

2. Let us find a general representation for 
f ( x) which makes use of the causality condition 

f (x) = 0 for x2 = x~- X2 < 0. 

This condition allows f ( x) to be written in the 
form 

00 

f (x) = ~ d/,2f (x) o (xz- f-2). 
0 

Let us introduce an auxiliary function 

such that 
00 

(2) 

(3) 

(4) 

f (x) = ~ Cf!'-' (x) df- 2 • (4') 

It is easy to see that the Fourier transform (/JA.2 ( q) 
of CfJA.2 ( x) satisfies the wave equation with a mass 
A. in q -space: 

(Oq- t-2 ) cp,.. (q) = o, 
oq =- a2; aqg + iJ2;iJqi + a2; oq~ + iJ2; aq;, (5) 

The solution of Eq. (5) may be expressed in terms 
of the value and the normal derivative of CfJA.2 ( q) 
on an arbitrary space-life surface 

(6) 
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where ~ ( q, 71.2 ) is the odd invariant function of Eq. lf! ( K2, u) vanishes everywhere except for the re-
(5); gion** 

and aa is an arbitrary three-dimensional space­
like surface in q -space. 

According to Eq. (4) the Fourier transform 
f ( q) of f ( x) is 

00 

f(q) = ~ e- iqx f (x) d4x = ~ ~1.' (q) dt.2. (7) 
0 

Inserting (6) into (7) we obtain the invariant Jost­
Lehmann-Dyson representation in its most general 
form 

00 

T (q) = ~ dt.2 ~ do" [ ~~-· (u), iJ~ ]Ll (q- u, A2). (8) 
0 C< 

If we now write 

00 

Ll (q -u, )..2) = ~ E (q- u) o ((q- u)2 - x 2) X (x2, t.2 ) dxe, 

where 

and set 
00 

~ (x 2, u) == ~ dt. 2 'tl'-' (u)"X (x2, )..2), 

then we obtain in place of Eq. (8) the following 
00 

f(q)=~ dx2 ~dcr"[cJi(x2, u) a:" J 
0 

(8') 

i.e., the desired representation investigated in de­
tail by Dyson.2* Choosing the surface u0 = 0 in 
Eq. (8') we get the representation found by Jost 
and Lehmann .1 

From Eq. (1) it follows that f ( q) vanishes in 
the region 

P0 - (m~ + (q- P?)'l•< q0 < (mi + (q + P) 2 )'i•- P0 , (9) 

where P = (p + p' )/2 and m 1 and m 2 are the 
masses of the lowest mass intermediate states 
I n1 > and I n2 > for which the matrix elements 

< p, r I A I n1 ) < n1 I B I p', r' ) 

and < p, r I B I n2) < n2 I A I p', r') 

fail to vanish. 
Dyson has shown that the representation (8') 

satisfies conditions (9) if and only if the function 

*The function t/J (x!, u) is related to the function F (u, s) 
of Eq. (30), reference 2, by t/J (x2 , u) = aF(u, x2 )/ax•. 

x2 ::;?:-max {0, m 1 -- I P + u j, m2 -I P- u I } 
(P + u)2 ::;?:- 0. (10) 

We do not repeat that proof here. Let us only 
stress that in the derivation of Eq. (8') as well as 
in the deduction of the limitation (10) on lf! ( K2, u) 
there is no need whatsoever for introducing a space 
of six dimensions as was done in reference 2. 

3. The general representation (8) or (8') depends 
on four parameters (71.2 or K 2 and the three compo­
nents of the vector u ) . This is related to the fact 
that f(q) depends on four quantities (q0, q1, q2, q3 ). 

In the derivation of (8) or (8') we have nowhere ex­
plicitly made use of the invariance properties of 
f (x). We shall show below that it is possible to 
obtain more specific representations than (8) or 
(8') for the simpler matrix elements of the form 
(1) provided use is made of consequences of rela­
tivistic invariance. In general f (x) may be ex­
pressed in terms of the invariants x2, p • x, p' • x, 
etc.:t f (x) = f (x2, p •X, p' •X, ... ) where the 
dots denote an other possible invariants beside x2• 

Consequently Eq. (3) may be rewritten in the form! 

00 

f(x)= ~ dt.2f(t.2, px, p'x ... )o(x2 -t.2 ). (3') 
0 

We now use the relation*** 

**We note that the proof of necessity of the condition (10) 
in Dyson's work cannot be considered complete. In the proof, 
Dyson introduced the concept of admissible hyperboloids 
(q- u)2 - x2 = 0, corresponding to values of u and x 2 satisfy­
ing condition (10), and showed, using theorems of Jost and 
Lehmann 1 that for any twice inadmissible hyperboloid tha cor­
responding value of t/J(x2 , u) is zero. A twice inadmissible 
hyperboloid is a hyperboloid whose both sheets (lower and 
upper) are in q-space inside region (9). However, as is easy to 
see by drawing an appropriate figure, a majority of the points 
u and x 2 that lie outside the region (10) correspond to hyper­
boloids ( q- u)2 - x 2 = 0 that have only one sheet inadmissible, 
i.e. the majority of the inadmissible hyperboloids is not twice 
inadmissible; and for just such hyperboloids Dyson did not 
show that the corresponding values of tjJ ( x 2 , u) are zero (this 
reservation applies equally to the cases of symmetric and non­
symmetric regions). 

t Strictly speaking the function f (x) is an invariant only 
when multiplied by factors of the type (2p0)'h; we ignore these 
factors. 

+Equation (3) is, of course, not unique. In particular, one 
may replace x0 by ± (x2 + A2)'h everywhere in f(A2 , p·x ..• ), 
such a substitution leads to the J ost-Lehmann 1 formula [see 
(14 ')]. 

***This identity is easily verified starting from the paramet­
ric representation. 
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+co 

~ dx2"X(x2, x2)~(x2, ),2) 
-co 

co 

= ~ X (x2, x2) ~ (x2, )..2) dx2 = (2~tt2 o (x2- )..2). (11) 

Here E ( x2, K2 ) = E ( x0 ) ~ ( x, K2 ) , where ~ ( x, K2 ) 

is the commutator function with mass K, and 
E ( x0 ) is the sign function. Introducing (11) into 
(3') and denoting 

co 

p (x2, px, ... ) = (2~t)2 ~ d ),2 f ()..2, px, . .. ) E (x) "X (xz, )..2), 

(12) 

·we find 
co 

f (x) = ~ dx2p (x2 , px, ... ) ll (x, x2). (13) 

From here it follows that the Fourier transform 
f (q) is 

co 

f (q) = ~ dx2 ~ d4u <t> (x2 , u) E (q- u) o ((q- u)2- x2), 

(14) 
where 

(14') 

The expression (14) for f ( q) coincides in form 
with the five parameter representation obtained 
by Dyson (formula (49) of reference 2, theorem 
"c"), which also follows directly from Eq. (8). 

For purposes of application (see reference 3 ) 
the derivation of restrictions of the type (10) on 
the spectral function ~ ( K2, u) appearing in (14) 
is of greatest importance. That these restrictions 
are sufficient is obvious. That they are necessary 
has not yet been shown,* however one can hardly 
doubt the validity of the conditions (10) for 
~ ( K2, u). In particular it is clear from physical 
considerations that the only contributions to f ( q) 
come from the admissible hyperboloids ( q- u )2 -
K2 = 0, since only they correspond to possible phys­
ical processes for which the matrix element of 
f ( q) does not vanish. 

Let us apply formula (14) to some simple matrix 
elements. 

+co 

6' (x2, x2) = (2,)-2 ~ da. exp [i a. x2 + ix2 1 4a.]. 
-co 

All relations and integrals encountered in this paper are to be 
interpreted in the distribution-theory sense. 

*In this connection see footnote **, page 1067. 

A. Vertex Part 

The antihermitian part of the vertex function 
is expressed in terms of a matrix element of the 
form 

f (x) = < 0 I [A (x/2), B (- x;2)J[ p ), (15) 

where I 0 > and I p > are the vacuum and one­
particle states respectively. In this case f ( x) 
depends on three invariants: x2, p •x, and p2,* 
of which only the first two are x- dependent. Con­
sequently a two-parameter representation for f ( q) 
should exist instead of the four- or five-parameter 
representations given by Eqs. (8') and (14). Indeed, 
the function p ( K2, p • x, p2) in Eq. (13) may be 
written in the form 

co 

p(x2, pX, p2)=2~ ~ eia(px) p(x2, IX, p2)d1X, (16) 
-00 

where a is some scalar parameter. From this, 
taking into account Eq. (14'), we obtain 

+co 

<I>.(x2,u,)=(-i) ~ p(x2,1X,p2)o(u-1Xp)d1X. (17) 
-co 

We now insert (17) into (14), integrate over d4u 
and obtain 

co +oo 

f(q) = (-i) ~ dx2 ~ d1Xp(11o2, IX, p2) 
o -oo 

X E (q --IX p) o ((q -1Xp)2 -- x2). (18) 

For the Fourier transform of the retarded com­
mutator 

fR (q) = ~ f1 (x) f (x) exp (- iqx) d4x, 

we have the following spectral representation 

co +oo ~ 

f ( ) 1 (' d 2 \' da. p (x2, a., p") 
R q = 21t ~ X .) ((q -~ a.p)2 - x•) ' 

o -co 

(19) 

The restrictions on the spectral function are the 
following: p is different from zero only in the 
region (p = 0; Po= m; m1 ====: m2) 

~- \2 + (m 1 - x) 1m< IX< 1/2- (m2 - x) 1 m if x < m2; 

-- 1/ 2 +(m1 - x)im<'Y.<:: 11 2 if mz<x<ml; 

_l,z<IX<ll2 if x>ml . . 
Thus in the case of the vertex part, which, except 
for unimportant factors is equal to fR ( q ) , it is 
possible to derive a two-parameter (a and K2) 

*The function e (x0) may always be written as e (p·x) be­
cause p is a timelike vector with Po ~ 0. 
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representation (18) and (19) instead of (14), by 
using relativistic in variance. 

B. Two Particle Matrix Element 

In this case 

f(x)=<PI[A(x;2), B(-x/2)Jip') (20) 

and it is related to the matrix element for the scat­
tering of two particles. 

Repeating the considerations of section A gives* 
+oo oo 

j'(q)=i ~dad~~ dx2 p(x2,ct,~,Q 2)s(q-ctP-~Q) 
-oo 0 

(21) 

+oo oo ~ 

f (q) = - 1- f da dP. \ dx2 p (x•, a, ;3, Q2) 
R. z, ) r j (q- a P-? Q)2-x2 , 

-00 0 

(22) 

where 

fJ = (p + p') / 2; Q = (p- p');2; PQ = 0, 

D.2 -the momentum transfer; the region in which 
the p of Eqs. (21) and (22) is different from zero 
(in the frame P = 0 ) is given as follows: 

_ I + ( ( m1;: x ) 2 + ~2 ~; ) '/,<;;:IX 

:C I- ((·m2-x)2 , r-< 2 6.2)';, 
""' p2 -t- r p2 , 

0 0 / 

- 1 + ( ( ml;: x ) 2 + ~2 :~· ) ';,<;;:a <;;: I -I ~~ I , 
m2<;;:x<;;:m1, 

(23) 

Consequently the two particle matrix element has a 
three-parameter representation (a, {3, and K2 ). 

Let us note an important property of Eqs. (18), 
(19), (21), and (22). In the limit as p and p' tend 
to zero they automatically go over into the well 
known formulas of Kallen-Lehmann4 for the one­
particle Green's function. 

For the study of analytic properties of the ma­
trix element for nucleon-meson scattering as a 
function of momentum transfer ;::,.2 , it is more 

*This formula was derived by a different method by V. D. 
Skarzhinskil' (Thesis, Moscow State University, 1957). 

convenient to consider instead of (20) a retarded 
commutator of the form 

f R. (x) = i 8 (x) ( 0 I [ 7J (xI 2), j (-xI 2)1! p; k ), 

where j is the nucleon current and 7J is the right 
hand side of the equation for the nucleon field op­
erators; p and k are the initial momenta of the 
nucleon and meson. The retarded scattering am­
plitude fR(q = (p' -k' )/2) is equal, in this case 
(up to unimportant factors), to the Fourier trans­
form of fR (x) and can be expressed in the form 
(22) with a different spectral function p1 : 

1\ dad~dx2pl(x2,a,~,p,k) 
f R (q) = 2,.; j [(p'- k')- a (p + k)- ~ (p- klF/4- x2 • 

(24) 

The limitations on 'j)1 of the type (23) may be eas­
ily obtained from conditions (10) by setting u = 

[ a ( p + k ) + {3 ( p - k ) ]/ 2 in the latter. 
In the center of mass system (p+k = 0; (p+k)2 

= w2; m 1 = m + p,; m 2 = 3p,) the entire dependence 
of fR ( q) in Eq. (24) on D.2 is in the denominator. 
Carrying out considerations fully analogous to those 
of Lehmann3 one can show that the scattering am­
plitude fR (q) = fR (w2, D.2 ) is regular in ;::,.2 

everywhere except for the following region on the 
real axis 

I - 2 6.2/k2 

:;>[I + 8[L3 (2m+ p.)/k2 (w2 - (m- 2[L)2)]'1•. (25) 

To find the region in which the imaginary part 
of fR (w2, D.2 ) is regular in D.2 it is necessary 
to use the general formula (14) (see reference 3) 
because expressions of the form (24) turn out to 
be insufficient. 
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