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Limiting angular correlations near threshold are found for reactions that have as their 
final products an infinitely heavy nucleus and two, three, or four identical fermions with 

• 1 spm 2· 

IN the treatment of reactions near threshold it is 
usually assumed that the final products of a reac
tion are in s states, since the contributions from 
non-zero orbital angular momenta can be neglected. 
If there are among the final products N > 2a + 1 
identical fermions (a is the spin of these fermions ) , 
then they cannot all be in s states; even at thresh
old wave functions satisfying the Pauli principle 
must in this case contain nonvanishing orbital an
gular momenta. Inclusion of effects of the Pauli 
principle leads to the appearance of angular cor
relations and to a change of the energy-depend
ences of cross -sections near threshold. 1 

For uncharged products the limiting angular cor
relations (output channel energy E - 0) caused by 
exchange symmetry can be calculated in a number 
of cases independently of the concrete mechanism 
of the reaction. This can be done in cases in which 
because of different energy dependences only one 
channel with a definite symmetry can contribute at 
the threshold. For charged products all channels 
(with different orbital angular momenta, with dif
ferent symmetries) have the same energy depend
ence at threshold, and to get the limiting angular 
distributions one must know the weights of the 
various channels. This requires further study of 
the concrete mechanism of the reaction. 

We here calculate the angular correlations for 
reactions that have as their final stages the emis
sion of N uncharged fermions with spin ~ by an 
infinitely heavy nucleus ( N = 2, 3, 4). In this 
case a channel with definite symmetry corresponds 
to a definite total spin S. The dependence of the 
reaction amplitude (in the momentum representa
tion) on the momenta of the emerging particles is 
given near threshold by functions of the form 

which are the first terms of the expansion of the 
exact amplitude in powers of the momenta. Here 

(1) 
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(ka)i = kai is the i-th component of the momen
tum of the a-th particle, Aa is symmetrization by 
the Young diagram corresponding to the given chan
nel, and Tik ... 1 is a certain tensor of the m-th 
rank that is independent of the momenta and con
tains the dependence of the amplitude on directions 
in space that are privileged for the given reaction 
(the rank m is the same as the lowest degree in 
the expansion of the amplitude in powers of the 
momenta 1 ). In the general case one can construct 
for each channel several such functions differing 
only in the numbering of the particles. These func
tions (and their linear combinations ) form the 
basis of a certain irreducible representation of 
the permutation group, of dimensionality r ~ 1 
(cf., e.g., reference 2). 

Analogously, a certain representation of the 
same dimensionality (that associated with the 
first representation) is given by spin functions 
of the form 

X (cr11 cr2 ••• crN) =A: II X (cra), (2) .. 
where x (a a) are spin functions of the a-th par
ticle (hereafter we shall write x (a a = ~) = ; a• 
X (a a = - ~) = 1/a), and A~ is symmetrization 
by the associated (transposed) Young diagram, 
which is obtained from the diagram for the coor
dinate functions by interchange of rows and col
umns. 

The cross section of the reaction is determined 
by the square of the "complete" amplitude, which 
is a certain bilinear combination of the coordinate 
and spin functions: 

F (k1 •.. kt.·, cr1 .•. cr.v) = h CikfiXk, 
i,k=l 

cr.\ = ~IF [2 II k~dk,d0.ao(k2- 2m£) 

"' 
£ (3N-2)/2+ m\ (" a ) lJ d" = . ~pN vl, 'h ... vN, 'FN '~"'. 

a 
(3) 
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The correlation function PN ( t9j ) = PN ( 81 cp 1· .. 8 WP N) 
is obtained by averaging the absolute square of the 
amplitude (3) over all directions in space and inte
grating over the possible distributions of the en
ergy among the particles; it depends only on the 
angles .Ji between the various pairs of particles 
(i = 1, 2, ...... N (N -1 )/2 ). We emphasize that 
the meaning of the amplitude for a given channel 
(definite N, S, Sz) belongs only to the "complete" 
amplitude F, which involves all possible coordi
nate functions fi. If, for example, we are inter
ested only in the energy dependence of the cross
section, there is no need to construct the ampli
tude (3), since actually all we need to calculate 
is the degree m, which is the same for all the 
fi. For the calculation of the angular distribution 
it is already essential to know the weights with 
which the various coordinate functions occur in 
the amplitude (3). 

From the mathematical point of view the con
struction of the amplitude (3) means separation 
of the antisymmetric representation of the permu
tation group from the direct product of the two 
representations given by the coordinate and spin 
functions. 2•3 We note that although the construc
tion of the coordinate and spin bases is not an 
unambiguous operation, all bases lead to the same 
amplitude. The reaction amplitude has been found 
in the following way: an orthonormal spin basis 
and the corresponding representation were con
structed, then a coordinate basis was chosen to 
give the associated representation, and finally 
the antisymmetric function was separated out 
from the direct product of the two bases. 

1. N = 2. The only contribution at threshold is 
that from the channel with S = 0, since the channel 
with S = 1 is suppressed by an extra power of the 
energy E in the cross section. The spin and co
ordinate functions 

f = const 

give respectively an antisymmetric and a symmet
ric representation. The amplitude F = fx gives 
p2 ( S = 0 ) = const. If in virtue of some selection 
rule the channel with S = 0 is closed (for exam
ple, if the total angular momentum in the final 
state must be different from zero), then the re
action goes in the channel with S = 1, for which 

X= ~~~2. f = (k1- k2);Ti> 

F=fx, P2(S=l)~~t-Sfacos&. 

We have written out only the spin function with the 
maximum value of Sz, since the channels with 
different Sz do not interfere and give the same 
angular dependences. 

2. N = 3. The reaction goes in the channel with 
S = ! , for which the two bases (spin and coordi
nate) 

X1 = (~t'Y/2- 7J1~2) ~3 / V2", 

1.2 = [2~t~27J3- (~1'Y/2 + 'll1~2) ~3] I Vif, 

give the same two-dimensional representation, 
with the following matrices for the interchanges 
of pairs of particles: 

(-1 0) M12 = 0 1 , 1 ( 1 
Ml3=2 -V3 

1 ( 1 V3) 
M23 = 2 V3 -1 

-V3) 
-1 , 

The amplitude and the correlation function have 
the forms 

For the total spin S = % the representations 
are one-dimensional: 

X= ~~~2~3, 

f = [(k1- k2)1 (k2- k3)k- (k2- k3)1(k1- k2hl T;k, F = fx, 

P3(S=f)~(~t/2)(1- ~~cos2 &1) 

+ + .2J COS & ;COS &k - + .2J COS&;. 

i+k 

3. N = 4. The channels with S = 0 and S = 1 
have the same energy dependence a4 ~ E. 7 

a) S = 0. The spin and coordinate bases 

X1 = (~I'Yi2- 'Y/1~2) (~3'"1)4- 'Y/3~4) I 2, 

X2 = {2~1~2'"1)3"1)4 + 2'll1'Yi2~3~!- (~1'"'12 + 'Y/1~2) (~3'"1)4 + '"1)3~4)}/2 V3, 

f1 = {(k1- k2)i (k3- k4)k + (k3- k4)l (k1- k2)k} T;k, 

f2 = {2klik2k + 2k2iklk + 2k3ik4k + 2k4ikak 

- (k1 + k2)i (k3 + k4)k- (k3 + k!)i (ki + k2)k} T;k I V3 
give the same two-dimensional representation, 
with the matrices 

M12 = M34 = ( -~ ~), M1a = M24 = ~ (_ ~-3 -~3), 

M2a = M14 = { ( y-13 :~) . 

The amplitude and the correlation function have 
the forms 

8+n,-,' " o. 1'\,1 " + ~ 2.J COS "i COS "k - 3 L.J COS v·;, 
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where 

~' cos&;cos&k=cos &12cos&34 

+ COS ,&13 COS ,&2! -~ COS .()-14 COS .()-23· 

b) S = 1. The spin basis 

X1 = ~1~2 (~3'll4- 'll3~4) I V2, ':(2 = (~!"'12- 'll1~2) ~3~4 I V2, 

X3 = 1/2 {(~1'll2 + 'll1~2) ~3~4- ~1~2 (i;3'll4 + 'll3~4)} 
gives a three-dimensional representation, with the 
matrices 

(
-1 0 0) 

M 34 = o 1 o , 
0 0 1 

\ 

The coordinate basis 

ft = {(k1- k2)i (kl + k2- k3- k4)k 

- (kt + k2- k3- k4)i (k1- k2)k} T;k, 

f 2 = {(k1 + k2)i (k3- k4)k - (ka- k4)i (k1 + k2)k 

+ 2k3tk4k- 2k4ik3k} T;k, 

/3 = V2 {(k1- k2)i (k3- k4)11.- (k3- k4)i (kl- k2)k} Ttk 

gives the other three-dimensional representation, 
with matrices that are the same as the matrices 
(4) except for a factor - 1. The amplitude and 
correlation function have the forms 

F = f1X1 + f2X2 + f3X3• 

p4 (S= 1)~ 1~ T: (6-~cos2 &;)++ 2J cos&tcos&k 
i i"''k 

The amplitudes that have been found can be used 
for the construction of angular dependences in re
actions with charged products, since although the 
ratio of the contributions of successive channels, 
"' ( Ze2mRo )2, does not vanish for E -. 0, it can 
still be small. Unlike the case of uncharged par
ticles, the angular part does not depend on the dis
tribution of the energy among the particles (instead 
of the momenta we must insert the unit vectors 
ka /ka ) , and therefore the correlation function is 
the same as the mean square of the amplitude. 

In conclusion we emphasize that the basic con
dition for the applicability of the method used here 
and in reference 1 is the existence of a finite range 
of the reaction (the radius R0 ). In this case the 
formulas we have obtained are the first terms of 
the expansions of the exact values (or their asym
ptotic expressions) in powers of ~ = ( 2mE )lf2 Ro 
(cf. also reference 4). Besides this one assumes 
a sufficiently smooth dependence of the wave func
tion on the energy near threshold, i.e., the absence 
of resonance effects in the region ~ ::;;: 1. This con
dition can be violated, for example, if the entire 
system or some subsystem of the final products 
has an energy level (actual or virtual ) near the 
threshold. Thus for two nucleons there exists 
near zero energy the virtual level e: = 0.07 Mev 
(for S = 0 ), and therefore for reactions with nu
cleons in the final state the range of validity of 
the threshold relations is further restricted to 
small values of the ratio E/ e:. In the range 
E/ e: ~ 1 it is already necessary to take into ac
count effects caused by the interaction of pairs of 
nucleons.5•6 Another example of a distortion of 
the threshold relations is the case in which the 
region ~ ~ 1 includes the threshold of another 
reaction (for two final products this effect has 
been studied in references 7 and 8 ) . 

I express my gratitude to Professor I. Ya. 
Pomeranchuk for suggesting the problem and for 
a discussion, and to I. Yu. Kobzarev for helpful 
comments. 
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