
SOVIET PHYSICS JETP VOLUME 36(9), NUMBER 5 NOVEMBER, 1959 

TllE PROBLEM OF TllE OPTICAL CONSTANTS OF CONDUCTORS 

V. P. SILIN 

P. N. Lebedev Physical Institute, Academy of Sciences, U.S.S.R. 

Submitted to JETP editor November 5, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1443-1450 (May, 1959) 

We discuss the problem of determining the complete set of optical constants of a conductor. 
It is shown that for an isotropic conductor this set consists not only of the index of refrac
tion and the absorption coefficient, but also of two real quantities corresponding to a com
plex boundary impedance. The real part of the boundary impedance determines the surface 
losses in the conductor, while the imaginary part of the dielectric constant determines the 
volume losses. We have formulated dispersion relations which connect the real and the im
aginary parts of the complex surface conductivity. We have considered fluctuations in the 
electromagnetic field in the conductor and have obtained the correlation functions for the 
field components of a metal filling a half-space. 

1. In a preceding paper by the author1 the theory 
of the optical constants of conductors was consid
ered for the case of radiation obliquely incident 
on the surface of a bulk, conducting body. We 
evaluated then the anomalous skin-effect by intro
ducing a boundary condition at the surface of the 
conductor corresponding to the presence of a sur
face current. The surface conductivity evaluated 
in that way leads to additional losses correspond
ing to a diffusive scattering of the conduction elec
trons at the metal surface. In the following we 
shall discuss the problem of the optical constants 
of a conductor and we shall consider fluctuations 
in the electromagnetic field and pay attention to 
some electrodynamical relations, taking into ac
count the presence of a boundary impedance z = 

y-1 which connects the surface current density i 
with the tangential components of the electrical 
field: 

i = r(w) {E -n(nE)}, (1) 

y ( w) is the complex surface conductivity, n 
the outward normal to the surface of the conduct
ing body. We have taken here the time depend
ence in the form eiwt. We have for an aniso
tropic conductor, and also for a crystal of cu
bic symmetry, instead of (1) 

where 'Ya~ is the second-order conductivity 
tensor. 

2. If we do not take the anomalous skin ef
fect into account, the optical properties of con
ductors are characterized by a complex dielec
tric constant 

(2) 

D = sE, s (w) = (n- ix)2 = s, + ie2• (3) 

Here n is the index of refraction and K the 
absorption coefficient. With the same degree of 
accuracy with which we may neglect the anoma
lous skin effect, these quantities fully determine 
the optical properties of a conductor. In the re
gion of the anomalous skin effect, on the other 
hand, when the mean free path is larger than or 
comparable to the penetration depth of the field, 
the complex dielectric constant, and thus n and 
K, do no longer determine all the optical con
stants of the conductor. The problem therefore 
arises of determining the complete set of opti
cal constants in that region. There is in the 
literature essentially no elucidation of this pro
blem. 

The majority of the papers considering the 
anomalous skin effect in the optical region are 
devoted to a microtheory and because of the 
complexity of the equations of the microfield 
they are restricted to a study of the case of 
bulk metals.* The discussion is appreciably 
simplified in the case when the absolute magni
tude of the complex dielectric constant is ap
preciably larger than unity. One can then use 
Leontovich' s boundary conditions2 and they lead 
in such a limiting case to the fact that the opti
cal properties of a bulk metal are completely 
characterized by the complex surface imped
ance (see reference 3) . Moreover, it turns out 
that one can introduce an effective complex 
dielectric constant and thus neff and Keff.4 

*See the papers quoted in reference 1. 
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These quantities characterize the conductor, 
however, only in the region where Eeff is 
large, and only for the case where the dimen
sions of the conductor are large compared to 
the skin-depth o, i.e., for bulk conductors. 
As an example we point out that the electrical 
polarizability of a sphere of radius R which 
determines the scattering and absorption of 
light in the case where R is small compared 
to the wavelength of the radiation both in a 
cavity and also inside the particle is equal to 

a,(e) = 2_ € - 1 
41t € + 2' 

~ 81tiy(w) 
where s =' s---. wR 

One can use the complex dielectric constant in 
optics in the region of the anomalous skin effect. 
This is because even in the infrared region the 
condition v/w « o, where v is the velocity of 
the conduction electrons, is satisfied. If we are 
interested also in terms of the order (v/ wo )2 
we must take into account the spatial dispersion 
of the dielectric constant and instead of Eq. (3) 
use an equation of the form5 

D = sE +a v• E + b grad divE. (4) 

Since the boundary impedance corresponds to an 
effect of the first order in vI wo we need take the 
anomalous skin effect correction into account only 
when for some reason or other y turns out to be 
excessively small. This can, in particular, occur 
in the case of specular reflection of the conduction 
electrons from the metal surface, a case which is 
of little practical interest. In metals, however, 
diffusive scattering takes apparently always place 
and y is by no means abnormally small. Because 
of this one can with great accuracy use Eq. (3), i.e., 
neglect the spatial dispersion of the dielectric con
stant. If y is not abnormally small the spatial dis
persion can be appreciable only for large v /wo 
when any expansion of (4) in powers of such a pa
rameter becomes invalid.* 

In essence the complete answer to the problem 
of the optical constants of a metal when the anoma
lous skin effect is taken into account is contained 
in what has been said. In addition to the complex 
dielectric constant there enters namely, into the 
complete set of optical constants also a complex 
boundary impedance, i.e., two real number y1 and 
Y2 (y = Yt + iy2), which are, like u and K, func
tions of the frequency of the electromagnetic field. 

*The case when e: tends to zero is an exception. This 
case corresponds to the possibility of the propagation of 
plasma waves. The velocity of propagation of these waves is 
essentially determined by the spatial dispersion of the dielec
tric constant. 

The optical properties of a conductor are then com
pletely characterized by E and y, independent of 
whether or not E is large. We note that the boun
dary impedance can in any case not be neglected 
(or rather, its real part cannot be neglected) when 
the imaginary part of E is small, which occurs 
when o ~ l, where l is the conduction electron 
mean free path. 

In the case of an anisotropic conductor we have 
instead of (3) 

(5) 

which gives us together with (2) the complete set 
of material equations which determine the optical 
properties of metallic crystals. 

3. We shall consider some consequences of the 
Maxwell equations and the material equations given 
above which enable us to obtain useful relations for 
optics when the anomalous skin effect is taken into 
account. First of all we consider the boundary 
conditions at the interface of the conductor with 
a vacuum (the generalization to the case of an 
interface of a conductor with a dielectric or with 
another conductor is obvious ) . The presence of 
a surface current leads to the following boundary 
condition for the tangential components of the mag
netic field (we shall take f.J. = 1 ) : 

Curl H = n X [Hmed- uvac] = 4n'i/c. (6) 

The component of the magnetic field normal to the 
surface as well as the tangential components of the 
electrical field are continuous 

H vac -Hmed Evac Emed 
n-n, t=t• (7) 

The normal component of the electrical induction, 
on the other hand, is discontinuous because the 
surface current density i leads by virtue of the 
equation of continuity to the presence of a surface 
charge density. If we take the time dependence in 
the form eiwt, we get for the surface charge den
sity a= (i/w) div i. The last boundary condition 
is therefore of the form 

(8) 

Because the vector i lies in the surface, there is 
in the first part of this relation no normal deriva
tive, and only the tangential derivatives of the tan
gential components of the electrical field enter 
therefore according to (1) or (2) and these are con
tinuous because the normal components of the mag
netic field are also continuous. 

Using the boundary conditions (6)- (8) we can 
determine the heat released inside the conductor. 
The energy current flowing through the surface of 
the conductor is namely equal to 
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= ~ dV li~ (E ~~ + H ~~) + ~ dS (iE), (9) 

where the first integral is taken over the whole 
volume of the conducting body, and the second 
one over its surface. Taking the time average 
and using Eq. (1) we get for the average quantity 
of heat Q released in the conductor per unit time 
the following expression (we neglect the imaginary 
part of the magnetic susceptibility): 

We see that if we neglect the imaginary part of the 
magnetic susceptibility, the energy absorption is 
determined by the real part. of y (surface losses ) 
and the imaginary part of E (volume losses). It 
follows in particular from this that while E2 < 0, 
y1 must be positive. 

In the case of an anisotropic conductor we have 
instead of (10) 

Q = - {: ~ dV (S:k- sk,.) EiE= 

+ +~dS(&;k+&k)EiE;. (11) 

4. We considered above the surface current (1) 
for the components of the electromagnetic field with 
a well determined frequency w taking into account 
that y ( w ) is some function of the frequency. The 
possibility of such a dispersion of y follows, gen
erally speaking, already from the fact that, for in
stance, in the isotropic case the surface current 
density at a given moment is determined in the 
usual way by the values of the field at the preceding 
moment (see, for instance, reference 3). One can 
thus show that y 1 ( w) is an even and y 2 ( w) an 
G jd function of the frequency w. 

One can easily obtain the dispersion relations 
which connect the real and imaginary parts of the 
boundary impedance. To do this one can, for in
stance, follow the derivation given in reference 3 
for obtaining the dispersion relations for the com
plex dielectric constant. The result is 

co co 

(w) = 2_ \ X'"(2 (x) dx 
1'1 7t J x2 _ ro2 ' 

2ro ~ '"(1 (x) 
1'2 (w) =- 2 2 dx. 

1t X - <o> 
(12) 

0 0 

In the neighborhood of x2 = w2 one must take the 
principal values of the integral in (12) as is usual 
in dispersion relations. To obtain the dispersion 
relations it is necessary to take into account that 
y ( w) has no singularity as w __.. 0. This is in 
accordance with the fact that y is finite in the 
static limit. Apart from this y ( w) must decrease 

when the frequency increases. One can verify that 
this condition is also satisfied by using the free 
electron model which is, generally speaking, the 
better applicable, the higher the frequency of the 
variable field. 

Indeed, the surface current density produced 
by the collisions of the electrons with the surface 
of the conductor and their subsequent diffusive 
scattering is as far as order of magnitude is con
cerned equal to i = enLLl.vw, where e is the elec
tron charge, n the number of electrons per unit 
volume, L the depth of the surface layer in which 
the electrons, which undergo noticeable collisions 
with the surface, lie. It is evident that under the 
conditions when the frequency of the variable field 
is large compared to the collision frequency of the 
electrons, L will be equal as to order of magni
tude to the distance traversed by an electron dur
ing one period of the variable field, i.e., L"' v/w 
(where v is the root mean square velocity of the 
electrons). Furthermore, w, the probability for 
the diffusive scattering of the electrons, is never 
larger than unity. Finally, the change in the elec
tron velocity under the influence of the variable 
field is as to order of magnitude (not taking phase 
amplification into account) equal to Ll.v "' ( e/mw) E 
according to the equations of motion of a free elec
tron. It is thus clear that y ~ e2uv /mw 2• A more 
rigorous evaluation, also based upon the free par
ticle model but using the transport equation, gives 
y = 3e2nv0 /16mw2, where v0 is the velocity on 
the Fermi surface and m the effective mass. 

The generalization of Eq. (12) for the aniso
tropic case is completely obvious. 

5. We shall now consider the problem of the 
fluctuations in the electromagnetic field when there 
is a complex surface resistivity. It is usual when 
considering fluctuations in the electromagnetic field 
to introduce a "strange" fluctuating induction cor
responding to spontaneous electrical and magnetic 
moments produced in the body as a result of the 
fluctuating charge oscillations (see reference 6 and 
Chap. XIII of reference 3). In accordance with this, 
the material equations take the form 

D"- (w) = s"B (w) E~ (w) + K"- (w), 

B"- (w) = [Lrt.~ (w) H ~ (w) + L"- (w), 

and from the Maxwell equations we get 

ic K"- (w) = - s"~£ ~ (w)- (;) curl" H (w), 

(13) 

The correlation between the strange inductions is 
then determined by the equations (our notation 
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differs from the one in reference 3 by the oppo
site sign of the frequency w) 

(K" (r1) K~ (r2))w = ifi (s"~ -- 8~a) o (r2- rr) 

xcoth (fiw/2xT), and so on (15) 

Here K is the Boltzmann constant. The formulae 
which we have written down solve in principle the 
problem of determining the electromagnetic fluc
tuations in any body, if there are no surface cur
rents present. 

It is also in our case natural to supplement the 
material Eq. (2) with a fluctuating surface current 
density g: 

i~ (w) = "("~ (w) E~ (w) + ga. (w). (16) 

Substituting this material equation into the boun
dary condition (6) we obtain the following relation 
in addition to Eqs. (14): 

g,(w) = -~"~(w) E~(w) + (c/4rr)curlaH(w). (17) 

One can say that the fluctuating surface current 
density g is caused by the fluctuations in the scat
tering of the electrons at the metal surface. 

Equation (17) is analogous to the first equation 
of (14). In order that we can use the known results 
of the theory of electromagnetic fluctuations it is 
convenient to construct a symmetric scheme and 
to introduce a surface equation similar to the sec
ond equation of (14). The possibility of formulating 
such an equation can physically be connected, for 
instance, with the fact that the probability for an 
electron spin flip at the surface of the conductor 
is different from zero (see, for instance, refer
ence 7). We can thus write 

CurlE= n x [Emed- Evac] = -- __!___~ (18) 
c at ' 

where b/ 47T is the surface magnetization density. 
Introducing the strange fluctuating magnetic in
duction density l, we have 

(19) 

l _ 1 (Hvac+ Hmed.)+ ic [Emed .-,vac] (20) 
a- - 2 v,~ ~ ~ --;;;- n X - ~ a• 

Since according to (18) the tangential compo
nents of the electrical field are discontinuous we 
must replace in Eqs. (16) and (17) E by, for in
stance, (Evac + Emed)/2. Moreover, it is con
venient to introduce instead of the fluctuating sur
face current density g a fluctuating surface elec
trical induction k. We get then 

1 va<: Emed) ka(w) = -y'fi~B(w)(Efl + ~ 

(21) 

where 

ka.(IJ)) = (4rrjiw)ga.(w), 'fla..~ = (4rrjiw)i"~· (22) 

Relations (20) and (21) are completely analogous 
to the volume relations (14). The form in which 
they are written makes it therefore immediately 
possible to write down the following formulae for 
the correlations between the incidental surface 
inductions: 

(k" (r1) k{l (r2)t 

= ih ('1/"fl- '1/~") o ([r2 - r1 ] x n) coth (fiw I 2xT), 

{!a. (rr) l~ (r2))"' 

= ifi (v ,fl- v;a.) o ([r2 - rrl x n) coth (fiw I 2xT), 

(kal~)w = 0. (23) 

In Eqs. (23) there occur surface o -functions and 
not volume o -functions, in contradistinction to 
Eq. (15). This is, of course, connected with the 
fact that in the expressions for the change in en
ergy k and l enter into a surface integral which 
is taken over the boundary surface of the body. 
Taking (22) into account we have the following ex
pression for the correlation between the incidental 
surface currents: 

(ga (rJ) g~(r2)) 

= fi"' (i + r·· )o([r2-rrl X n) coth(fiwj2xT). (24) 
41t "~ ~" 

From Eqs. (23), (24) and the Onsager relations in 
the case of bodies which do not possess a "mag
netic structure" 3 and which are not in an external 
magnetic field the following equations follow 

'Y"~ = 'Y~a' '1/"~ = '1/~,, i<l{l = l(la.' (25) 

If, however, the system is in a constant magnetic 
field H, we have 

(26) 

6. Equations (21)- (23) together with Eqs. (14) 
and (15) make it in principle possible to determine 
the fluctuations in the electromagnetic field in a 
conductor in the region where one can apply the 
material equations used by us. We shall in the 
following consider as an example the fluctuations 
in the electromagnetic field in an isotropic metal 
in the case where we can neglect the imaginary 
part of the dielectric constant and the magnetic 
susceptibility, but where it is necessary to take 
the real part of y into account. Such a case cor
responds just to the region of the anomalous skin
effect. One can then drop the strange fluctuating 
volume inductions, since it is evident that the 
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fluctuations in the field will be caused only by 
the incidental surface current density g. 

Assuming that the metal fills the half-space 
z < 0, we can write down the system of basic 
equations necessary to solve our problem in the 
following form 

curl E(w)=i(w/c)H(w), 

curlH((u)=-i((u/c)E(w), z>O, 

curl E (w) = i (w 1 c) H (w), 

curlH(w)=-i((u/c)sE(w), z<O, 

(c I 4n:) n X [Hmed- Hvac] 

= 1 (E-n (En)) + g, z = 00 

(27) 

(28) 

Solving the Maxwell equations (27) with the boun
dary conditions (28), using, for instance, Fourier 
transforms, we can express the electromagnetic 
field in the form of a functional of the fluctuating 
surface current density which is afterwards aver
aged by means of (24) o We give the final relations 
which determine the spatial correlations of the 
components of the electrical field strength: 

Ea. (rl, w) £; (r2, w') = 8 ( w + u/) (£~1 ) £~2 ))"'; 

(£(1)£(2)) = 2hw3 th hw 
a. ~ "' c4 CO 'btT 

x Rer fdq exp {i(w I c) [z1 Ve (w)- q- z2 Ve (-w)-q]} 

g /Y1-q+Ve-q+(4r:"J'Jc)l2 

{[ 1 2 11 - q A 1• J X _2" (1 + )1 - qA j ) (oa./3- Oa.z0 13 z) + I z _ q I qo,z0(3z 

X lo(<:! R Yq)- iYqj1-qA 12 

'c 

-{(o,~-Oa.zl\;z)] .!2 (: R Vl7)}• 

(£(1) £(2 )) _ 2hw3 th ~ R 
a. ~ "' - c• CO 2xT e I 

X r dq exp {- i (w /c) [z, Vi=-q- 72 (VT-=q)*]} 

0 IV 1- q + V e- q + (4rq 1 c) [2 

x {[{ (1 + )1- qA )2) (oa.B- oa.zo 0z) + I; 1-~:r qo""o~z] 
X Jo (: R VCi)- i Yql1- qA [2 

x [<VI - q)* ;a. o~z ( 1 - oa.zl 

+ V 1 - q ~On ( 1 - O~z)] J 1 ( ~ R Yq) 

2 [Ra.R 13 + (1 -11- qA I) Rt (1- Oo:z) (1- 0(3z) 

- }Coo:13 - Oa.z0(3z)]Jz( ~ R Yq)}, Z1o Zz > 0; 

(£(1) £(2)) - 2liws coth !!':'!._ Re.., f dq 
"' ~ "' - c• 2xT 1 j 

0 

X exp {-i (w/ c) [z1 Y~ + z2 Ye(-w)- q]} 

I 111- q + V"- q + (4rt1 / c) 1• 

X {l; (1 + j1 - qA 1
2) (o'" 13 - o'"2o~2) 

11- qA r• ] ( .. /"-\ + V1-qYe(-w)-q qoa.z0(3z Jo ; R r q) 

- iYqjl-qAJ2 [Ys(-w)- q~a.o 13z(1-o<>z) 

+ V1-qioa.z(l-o(3z)]J1(~ R Yq) 

2 [Ra.R 13 + ( 1 - j1 - q A I ) R_2 ( 1 - O<Xz) ( 1 - 0(3z) 

-{ (o'" 13 - Oa.z0(3z)] J z(; R V£1)}, Z1 > 0, Z2 < Oo 

(29) 

Here R = r 1 - r 2, Jn is a Bessel function, and A 
is defined by the formula 

A = { 1 + 1 } { 1 -l- e + 4rr 1}-1 
. Y1-q Ve-q ¥1-q ' Ve-q c 0 

There is no summation over repeated indices in 
Eqs 0 (29). One can find the correlation formulae 
for the magnetic field also by completely analogous 
means. 

Equations (29) enable us, in particular, to ob
tain the following expression for the density of the 
energy of the electromagnetic field outside the 
metal: 

1 

1 1iw3 h 1iw {\ 
w"' = ~ (EZ (r) + H 2 (r))w = rtc• cot ZxT Re "( 

0
\ dq 

00 

+ ~ dq 0 q exp (- 2 -7- z V q - 1) 
1 

); [ 1 v 1 - q + v s - q + 4:~ 1-2 

+11+s f!=~+4:~v-1-qr2J}o 

0 

(30) 

The integral over q from zero to unity gives the 
radiation energy density which does not depend on 
the distance and corresponds to the energy of the 
wave field. The second integral over q from 
unity to infinity in Eq. (30) corresponds to the 
energy of the quasi-stationary field which de-
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creases away from the surface of the conductor. 
At large distances this diminution is determined 
by the relation 

x {1 + 1 } (c J wz)2 • 
jVe-1+41tj/CJ2 (31) 

In the case where the absolute magnitude of the 
dielectric constant is large compared to unity the 
expression for the energy density of the quasi
stationary field can essentially be obtained directly 
from Eq. (1.18) of Rytov's book6 if one substitutes 
in that equation for the dielectric constant Eeff = 
(..f€ + 471")1/c) 2• This possibility is caused by the 
fact that in the region of large values of E the 
presence of a surface current can be taken into 
account by introducing just such an effective di
electric constant.1 
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