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A macroscopic calculation of the Voigt effect for centimeter waves in paramagnetic media 
is presented. 

l. Ordinary double refraction in gyrotropic media 
denotes that radiation traversing such substances 
splits into two waves with mutually perpendicular 
magnetic (and electric) vectors and propagating 
in different directions. In the special case repre -· 
sented by the Voigt effect the gyration vector is 
perpendicular to the direction of propagation of 
the incident wave. The original linearly polarized 
radiation then splits into two waves which propa
gate in the same direction with different velocities 
and at different rates of absorption. These waves 
interfere at each point of the medium; the original 
linear polarization becomes elliptic and the ellipse 
rotates as the radiation passes through the medium. 

In the present paper we attempt to construct a 
phenomenological theory of paramagnetic rotation 
through the Voigt effect for centimeter waves. The 
paramagnetic substance is assumed to be electric
ally isotropic with magnetic anisotropy caused by 
a static external magnetic field. 1 

2. We must first derive the magnetic suscepti
bility tensor for arbitrary relative orientation of 
the external static magnetic field H0 and the ex
ternal oscillating magnetic field Tl of the radio 
wave. Hitherto2•3 phenomenological theories of 
paramagnetic relaxation effects have considered 
only two special orientations, with H0 and Tl 
either mutually parallel or perpendicular. 

To obtain the magnetic susceptibility tensor 
we use the general equations that describe the 
magnetization of a normal paramagnetic with 
pure spin magnetism in an oscillating field. 2 The 
equation for the time dependence of the magneti
zation M is2 

M. =- x {o<D JoM} + g {[MxH]}, 

where 

<D = - b / 2T- HM + M2T I 2C 

is the nonequilibrium thermodynamic potential. 
Here H = H0 + Tl is the total external magnetic 

(1) 

(2) 

field with a de component H0 and an rf compo
nent TJ; T is the temperature of the spin system; 
b is the magnetic specific heat constant; C is 
the Curie constant; g is the gyromagnetic ratio; 
K in the phenomenological theory is an unknown 
function of H0 and of the (assumed constant) 
lattice temperature T0• The curly brackets in 
(1) denote that the quantities within them are lin
earized with respect to the small quantities (} = 
T- T0, the components of Tl and the variable 
part of the magnetization ~ = M - M0, where 
M0 =(C/T0 )H0• 

We use (1) and the first law of thermodynamics 
for the spin system, as in reference 2. Instead of 
K we introduce the isothermal spin relaxation 
time of the magnetization, Ts = c/T0K; 4 instead 
of. the coefficient of thermal conductivity between 
the spin system and the lattice, a, which appears 
in the first law and remains an unknown function 
of T 0 and H0 in the phenomenological theory, 
we introduce the spin-lattice relaxation time Te = 
(b + cH~ )/ aT0•3 After linearization we arrive at 
the following basic equation for ~ : 

where Z0 is a unit vector in the direction of the 
constant field H0; Xo = c/T0 is the equilibrium 
isothermal magnetic susceptibility; y = [ 1 + 

(3) 

H~ ( c/b) r 1 = CM /CH is the ratio of specific heats 
of the spin system for constant magnetization and a 
static field; w is the oscillating field frequency 
(in deriving (3) it was assumed that the time de
pendence of ~ and (} is given, as for TJ, by the 
factor exp ( iwt), since steady conditions are 
being considered) and w0 = gH0• It is found easily 
and directly that the solution of (3) is given by 

E = X..L "l + i [8xYj] + (Y.II - X..L) (loYJ) lo. (4) 

Here x11 and Xl represent the susceptibility of 
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the paramagnetic in parallel and perpendicular 
fields, res~ctively (obtained in reference 2) and 
6 is the gyration vector (obtained in reference 1 ) , 
which is parallel to l0 • Substituting (4) into (3) we 
obtain the complex magnetic susceptibility tensor 

;XJ.. 
X= I i3 

\o 
3. In order to obtain the refractive index of a 

wave traversing a paramagnet we now make use 
of Maxwell's equations 

curl E = - B 1 c, curlH' = Djc. 

Here H' is the magnetic field in the material. 
Since the specimen is regarded as electrically 
isotropic we have 

D =sE. 

(5) 

(6) 

(7) 

We denote by 11' and b the variable parts of H' 
and B, so that b = 11' + 41!"~. In paragraph 2 it 
was shown that ~ = x11; since paramagnets are 
only weakly polarizable we shall assume that 
~ = X11'. Equation (4) then gives 

b = (1 + 41tXJ..) 1j' + 41t [OX1j'] 

+ 41t (X 11 - XJ..) (lo'fl') lo. (8) 

Substituting (7) into (6), eliminating E and making 
use of (8), we obtain the wave equation for 11', 
which for a plane wave is represented by 

(sn2t 1 [k0 (ko1J') -'fj'] + ( 1 + 41txJ..) 11' 

+ 41ti [S x 1j'] + 41t (X II - XJ..) (lo'fl') 10 = 0, (9) 

where n is the index of refraction and ko is a 
unit vector in the direction of wave propagation. 

We now consider a wave propagating in the x 
direction. Projecting (9) on the coordinate axes, 
we obtain a set of homogeneous equations for the 
vector components of 11', the solution of which 
gives two values for the index of refraction. Thus 
two waves are possible in the x direction. From 
the solution we find that one of these waves posses
ses the index of refraction 

(10) 

and a magnetic vector parallel to l0 ( so that 
T/x = ny = 0, n~ ¢ 0 ). For the other wave we have 
the refractive index 

n J.. = {s [(1 + 41txJ..)- 161t2o2 1 ( 1 + 41txJ..)]}'!. (11) 

and a magnetic vector lying in a plane perpendicu
lar to l0 (so that Tiz = 0 ) . The second wave is 
elliptically polarized with the following relation 
between T/x and TJy: 

Yj~(o) = i41tOYj~(o)/ (1 + 41t;(J..), (12) 

which shows that the x component of Tl' is con
siderably smaller than the y component, since 
Xl and o are of the order of Xo "' 10-6 (see 
reference 1). 

4. Let us now consider the interference of the 
waves indicated by (10) and (11) inside the para
magnetic. An rf wave impinges at the point x = 0 
on a plane-parallel paramagnetic plate which is 
perpendicular to the x axis . The magnetic field 
of the wave is linearly polarized in the yz plane 
with the components 

Yiu = ( Yio sin ex.) etoot, (13) 

where a is the angle between H0 and "'· Taking 
the boundary conditions into account and ignoring 
reflection of the incident wave (since we are in
terested only in the change of polarization but not 
of intensity), we obtain at a point x inside the 
plate the two waves: 

"f/~ = Yj0 cos cx.exp {iw (t- n 11 xI c)}, (14) 

Yj~ = "f/o sin ex. exp {iw (t- n J.. xI c)}, 

, . 4n3 , (15) 
Yix = t 1 + 4nxJ.. Yiu• 

the complex refractive indices of which are given 
by 

n 11 = n'11 -in'11 , nJ.. = n~ -in~. (16) 

To investigate the interference of waves (14) and 
(15) it is sufficient to obtain the results in the yz 
plane, since the x component of the magnetic field 
disappears when the combined oscillations emerge 
from the plate. Introducing the notation 

al = "f/o sin CX. exp (- : n~ X) , 
a2 = "f/o cos ex. exp (- ; n"11 x) , 

and eliminating the time t from 
obtain the equation of an ellipse: 

(17) 

I d f T/y an T/z, we 

("t/~ 1 a1)2 + (7J~I a2)2- 2 ("t/~ "f/~1 a1a2) coso= sin2 o, (18) 

where o = o2 - o1• This ellipse is rotated with re
spect to the coordinate axes through an angle which 
is the sum of a and the angle of paramagnetic ro
tation {3, by which we mean the angle between TJ 
in the incident wave and the major semi axis of 
the polarization ellipse of the emerging wave. 
The ellipse can be put into canonical form by a 
transformation of the axes, and for the angle of 
rotation cp = a + {3 we obtain 

(19) 

it is evident that we have cp = a at x = 0, as is to 
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be expected. We now take the very small suscepti
bility of paramagnets (Xo ~ 10-6 ) into account. 
Since Xl• xu and o in (10) and (11) are of the 
order of Xo (see reference 1), we can extract 
approximate values of the square roots in (10) 
and (11) and obtain corresponding approximations 
for cos o and for the exponentials in a 1 and a2. 
Equation (19) then gives 

Considering also that the investigated effect is very 
small in paramagnets, in virtue of which we may 
assume sin {3 "' {3 and cos {3 "' 1, we finally ob
tain from (20): 

~ = - (rr y"Ew I c) (x~- x'n) (sin 2<X) X, (21) 

where x" is the imaginary part of the susceptibil
ity. 

It is evident from (21) that the angle of rotation 
depends in first approximation only on the differ
ence between the absorptions of the waves corre
sponding to (10) and (11). This angle also exhibits 
periodic dependence on a, vanishing at a = 0, 
1r/2, 1r • • • • The angle of rotation also depends 
on the frequency of the oscillating field and the 
magnitude of the de field. 

5. In experiments on paramagnetic rotation it 
is customary to determine the dependence of the 
angle of rotation on the static field for a constant 
radiation frequency. To plot the {3 ( H0 ) curve 
we must use the expressions2 

, (F-.:,+ -.:8 ) w + (1- F)2 -.:~ -.;8 w3 

X II = Xo [1- (1- F) -.:,vu2]2 + (-.:e + -..)2 w2 ' (23) 

where F = 1 - y increases monotonically from 0 
to 1 as H0 increases. 

All the rotation experiments known to us were 
performed at frequencies for which rw was very 
close to unity and Tew was so large that spin
lattice relaxation was practically absent. For 
TeW » 1, Eq. (23) then gives 

x"ll = Xo (1- F)2 "CSW I [1 + (1 - F)2 -c;w2]. (24) 

It is evident from (22) and (24) that the static field 
H0 enters into the expression for {3 both directly 
through w0 and F and through the isothermal 
spin relaxation time T 5 • For some paramagnets 
experimental data have recently been obtained5 

on spin absorption in parallel fields which may 
possibly indicate that Ts is dependent on the ex
ternal field (although this is still unaccounted 

for ) or. perhaps that the theory of reference 2 
is inadequate for these cases. However, a number 
of investigations 1•6 show that the theory of Shaposh
nikov2 is applicable with Ts independent of H0 for 
a large number of paramagnets over broad fre
quency and temperature ranges. 

When this is so, Eqs. (21), (22), and (23) give 
a very definite dependence of {3 on H0• The shape 
of the {3 ( H0 ) curve can, of course, differ depend
ing on the substance. In some substances xll is 
very weakly dependent on H0; 6 the curve {3 = 
f ( H0 ) is then similar in shape to the absorption 
curve in perpendicular fields (22), with the single 
difference that since x1 and xi! are equal at 
H0 = 0 the rotation curve starts at the coordinate 
origin (which is physically expected, since with 
H0 = 0 there is no gyrotropy and there can be no 
rotation). We also note from an analysis of the 
rotation curve given by (21), (22), and (24) with 
r s independent of H0 that except for H0 - co and 
H0 = 0 the rotation either vanishes nowhere or van
ishes twice. 

6. Not much experimental information has been 
published concerning the effect that we are consid
ering. So far as we know the first such data were 
given in reference 7 for powdered MnS04 • H20 
at about. 9.4 x 109 cps at room temperature. In 
this paper the experimental curve {3 = f ( H0 ) was 
given for H0 ranging from about 2. 7 x 103 to 
4. 7 x 103 oersteds, with a maximum for H0 at 
about 3.4 x 103 oersteds and with no intersection 
of the horizontal axis. The review article by Goz
zini8 gives the curve in reference 7 together with 
a curve for MnS04 • H20 (communicated privately) 
obtained under the same conditions but carried to 
about 5.8 x 103 oersteds for H0, as well as measure
ments of the given effect in certain radicals. The 
curves given in reference 8 possess a single max
imum but do not intersect the horizontal axis. 
Hedvig3 gives experimental results for the depend
ence of the rotation angle on the angle a between 
the static and oscillating fields for the organic free 
radical diphenylpicrylhydrazyl at about 9.4 x 109 

cps at room temperature; this relation can appar
ently be characterized by sin 2 a. Battaglia et al 
and Hedvig note especially that the sign of the ef
fect does not change. In these papers the experi
mental results are not discussed from a theoret
ical point of view. 

A recent paper by Imamutdinov, Neprimerov 
and Shekun 10 gives the experimental {3 ( H0 ) curve 
for powdered MnC12 • 4H20 at room temperature 
at about 9.4 x 109 cps with some theoretical dis
cussion. 

The rotation curve given in reference 10 begins 
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at zero, has a sharp maximum in the positive re
gion, passes through zero again at H0 = 4 x 103 

oersteds, has a very indistinct minimum in the 
negative region and then monotonically approaches 
the horizontal axis slowly from below. The theo
retical discussion is as follows. In (21) (given in 
reference 10 without derivation) the expressions 

• X0ro [ 1 1 ] xl. = z::r (roo- ro)2 + 't 2 + (roo+ w)2 + 't 2 ' (25) 

(26) 

are substituted. It is stated10 that for lack of a 
satisfactory theory of the complex paramagnetic 
susceptibility of solids these expressions were 
obtained by \ising the theory for a paramagnetic 
gas consisting of identical particles with spin!. 
It is then stated that if we assume the relaxation 
time T in (25) and (26) to increase with H0 these 
equations "describe the experimental results well 
both qualitatively and quantitatively." Regarding 
the postulated increase of T with the field the 
writers refer to Gorter's book3 and Kurushin's 
papers. 6 It is also stated that the phenomenolog
ical theory of Shaposhnikov3 likewise apparently 
leads to (25) and (26). 

7. A comparison of the experimental data from 
references 7-9 (in Sec. 6) with the discussion of 
the theoretical rotation curve given by (21), (22), 
and (24) (Sec. 5) indicates agreement between these 
experimental results and our theory. The follow
ing must be stated concerning the experimental 
rotation curve given in reference 10. For powdered 
MnC12 • 4H20 at room temperature and at a fre
quency very close to that used in reference 7, 
Kurushin obtained the experimental curves of 
x1 ( Ho ) and xll ( H0 ) using the same apparatus 
that he had described in an earlier paper. 6 These 
results, which will be published in the near future, 
show without any doubt that up to H0 of the order 
6 x 103 oersteds the xi! ( H0) curve is everywhere 
below the x1 ( H0) curve. It follows (see (21)) 
that in the given region of field values the rotation 
curve f3 ( H0 ) can become zero nowhere except at 
the origin H0 = 0; however, the experimental 
curve in reference 7 passes through zero for 
H0 = 4 x 103 oersteds. It must be added that for 
MnC12 • 4H20 under the given conditions many ex
periments1•6 support Shaposhnikov's theory with 
Ts independent of H0; but in this case, as was 
noted at the end of Sec. 5, an analysis of the f3 (H0) 
curve shows that except for H0 = 0 the curve has 
either no zero or two zeros, in ag;reement with 
the experimental results of Kurushin that have 
just been mentioned. 

With regard to the theoretical discussion in 

reference 10 we may state the following. Although 
(25) and (26) are actually derived from the general 
equations of Karplus and Schwinger11 for the com
plex susceptibility of an ideal gas in the special 
case of spin ! and perpendicular and parallel 
fields, we believe it would be incorrect to use (25) 
and (26) in the theoretical explanation of the ex
perimental rotation curve given in reference 10. 
Under the given experimental conditions the ·spin 
system of the paramagnetic is practically iso-
lated from the lattice, since Tew » 1. Therefore 
for xjj we must use an expression that corresponds 
to adiabatic spin -spin relaxation in the absence of 
spin-lattice relaxation, as we did in Sec. 5 [see 
Eq. (24)]. It is also evident from (22) that x1 does 
not contain T e at all. A comparison of (25) and 
(26) with (22) and (24) shows that when T = Ts 

(25) coincides with (22); however, (26) is not trans
formed into (24), which corresponds to adiabatic 
spin -spin relaxation and is obtained from (23) for 
Tew- oo, but (26) does correspond to isothermal 
spin-spin relaxation and is obtained from (23) for 
TeW- 0. We also note that if we follow the authors 
of reference 10 by accepting (25) and (26), we can
not fully check their statement that theory and 
experiment are in good qualitative and quantita
tive agreement for T increasing with H0 since 
the specific dependence of To on H is not given. 
We must add that if in (25) and (26) we understand 
T to mean Ts [which is required if (25) is to 
agree with (22)], then we are not in accord with 
the reference to Gorter and to Kurushin6 with re
gard to the dependence of T s on H0. In our opin
ion Gorter's results cannot be used for any defi
nite general conclusions regarding the dependence 
of Ts on H0, while the cited papers of Kurushin 
indicate that Ts is independent of H0. 

8. We have plotted the f3 ( H0) curve given by 
(21), (22), and (24) for MnC12 • 4H20 under the 
experimental conditions of reference 10 with Ts 

taken as 0.24 x 10-9 sec (see reference 6). The 
curve starts at zero and remains entirely in the 
positive region with one maximum, after which it 
drops monotonically and practically reaches the 
horizontal axis for H0 of the order 8 x 103 oer
steds. This rotation curve agrees with the ex
perimental curves of xi ( H0) and xi!< H0) that 
were obtained by Kurushin (see Sec. 7). 

The author takes this opportunity to thank I. G. 
Shaposhnikov and A. I. Kurushin for valuable sug
gestions and discussions. 
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