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Using the general principles of Gibbs' statistical mechanics, we have developed a method 
which enables us to evaluate the transition probability density for any generalized coordi­
nate in a system with a nonlinear relaxation mechanism. This method does not require a 
knowledge of the law of motion for the average value of the coordinate, but uses only the 
general form of the corresponding equation of motion. 

THE method developed by Ter letskii and the au­
thor5 using general results obtained earlier1- 4 

enables us to evaulate the transition probability 
density for a generalized coordinate if the behav­
ior of its average value is known when there are 
additional constant forces present (or included). 

The averaged equation of motion contains, how­
ever, the average value of the coordinate (the first 
moment) only when the corresponding system is 
linear. In the case of a nonlinear system, however, 
the averaged equation contains also higher mo­
ments of the coordinates, the order of which is 
determined by the character of the nonlinearity. 

This fact makes it difficult to use the known 
nonlinear equations of motion when one wants to 
find the transition probability density using the 
scheme given in reference 5, since in problems 
of Brownian motion one usually starts from the 
averaged equations of motion and the average 
dissipative forces produced by the interaction 
of the system with the medium. 

The aim of the present paper consists of setting 
up a scheme which enables us to evaluate the tran­
sition probability density for nonlinear systems 
starting solely from the general form of the ap­
propriate equation of motion. 

1. THE CHARACTERISTIC FUNCTION 

As in reference 5, we shall introduce for the 
generalized coordinate Q the transition proba­
bility density W ( Q, t; Q0, t0 ) and the character­
istic function Z (a, t; b, t0 ) corresponding to it. 
Using the same notation as in reference 5, we 
have 

+oo 
= (2~tf1 ~ ~ {exp (i;Q + i71Q0)} Z (a, t; b, t0) d; d1J, (1) 

-00 

where 
a=i;8, b=i1J8, 8=kT. 

The following relations follow from the defini­
tion of Z (see reference 5) 

-a 

Q = - (8/a) i;z [b=o• 

Q_i = (- 8)1 __!__ aJ~ j , 
z aal b=O 

(2) 

(3) 

where the index a denotes that we have taken an 
average over an auxiliary ensemble which is dis­
tinguished from the original, equilibrium one by 
the inclusion of an additional constant force -a, 
acting in the direction of the coordinate Q. 

The equation of motion for Q averaged over 
--.-a 

the ensemble just mentioned connects Q with 
-a 

the moments Qj and, would according to (2) 
and (3) at the same time be a differential equation 
for the characteristic function Z. Using the in­
verse Fourier transformation one can from this 
equation go over to a differential equation for the 
probability density itself. 

The transition probability density W ( Q, t; Q0, t0 ) 

is the solution of this equation which has a source 
for t = t 0• 

2. A BROWNIAN PARTICLE IN AN EXTERNAL 
FIELD 

The averaged equation of motion for a particle 
in the presence of an additional force (-a) and 

1011 



1012 V. B. MAGALINSKII 

neglecting the inertial forces is of the form 

~a --a 

rQ + F(Q) =-a, (4) 

where y is the coefficient of viscosity and F ( Q) 
= -dU/dQ is the external force. 

Expanding F ( Q) in a power :series in Q and 
averaging (4) term by term we find 

-a -a 

rQ + h AJQJ = -a, 
j 

A1 = (1 lj!) di+lu 1 dQH-l IQ=O· (4') 

aw 1o-c = aJ 1oq; 

J =" B·(i \~( f-kW) ="'_!_~(W dkG) (9) ~ 1 k J al q LJ k' al dqk ' 
lo k k 

where we have introduced the notation 

q = Q (C8)-'1•, -c = t (C8)~'1•, B1 = A1 (81 C)il2, 

G (q) = 2JB1qi = f (qV81 C). 
j 

The solution of this equation can be obtained in the 
form of quadratures. The expression for the cur­
rent J can be transformed to the form 

Substituting (2) and (3) into (4') we find a differen- J = exp ( _ q2 1 2) J1 , 

tial equation for the characteristic function Z (a, t): 

az _ ..!!:__ ,, A·(-8)i aiz = ~ z. 
I at e L..i I iJa' e (5) 

j 

Evaluating the Fourier components of this equa­
tion, according to (I), we find that W ( Q, t; Q0, t 0 ) 

satisfies the Einstein-Fokker-Planck equation 

aw - _a_ (D aw - __!__ ~ w) D = ~ (6) 
at - aQ aQ y aQ ' y • 

being its source function. One sees easily that the 
inclusion of an additional constant force -a leads 
formally to the appearance of a diffusion current 
on the right hand side of Eq. (6). 

3. AN ELECTRICAL CffiCUIT WITH A NON­
LINEAR RELAXATION MECHANISM 

We shall consider an electrical circuit consist­
ing of a capacity C and a resishmce with a non­
linear current-voltage characteristic of the form 

The charge Q concentrated upon the capacity 
is the generalized coordinate and the voltage u the 
generalized force so that the averaged equation of 
motion for Q when there is an additional constant 
force -a present is of the form 

~a a 

Q + f [(Q I C)+ a] =' 0. (7) 

By means of the procedure described in Sec. 2 we 
find the following differential equation for the char­
acteristic function Z (a, t): 

az = ..!!:__ "A- ( i \ (- 81 C)k J-k akz (S) 
at e LJ ' k J a a k • 

hk ' a 

The corresponding equation for the probability 
density itself 

+ico 

W(q, -c)= (2rr8i)~1 ~ eaQ!ez(a, t)da 
-ioo 

is of the form 

wl = w exp (q212), 

after which (9) can be written as 

aw11a-c = a111 aq- qJ1. 

writing after that 
+ioo 

(10') 

(11) 

w1 (q, -c) = (2rri)-1 ~ eq•w 1 (s, -c) ds, (12) 
-leo 

we obtain for the Fourier component W1 the equa­
tion 

B ·r 1~2k B ·i - h Jf.S h it v~ J s = = --H· s i 2 
1 ( ) J, k 2kk! (j- 2k)! j 2112 I (. I ) 

+co 
= (2rr)~'/, ~ e-(q-s)'/2Q (q) dq (13) 

co 

[ Hn ( x) is a Hermite polynomial] which after the 
substitution 

W2 = ~W1 exp (s2 12) (14) 

leads to 

oW do-c -J1aw21as = o. (15) 

The initial condition W 2 ( s, To) = W 20 ( s) is 
connected with the initial condition of the original 
equation (9) W(q,T0 ) =W0 (q) through (10'), (12), 
and (14). 

Solving (15) by the methods of characteristics 
we find W 2 ( s, T ) = <I> ( zf; ) where zf; ( s, T ) = 
J ds/J1 ( s) + T is the characteristic of Eq. (15). 

Taking the initial condition into account we get 
W2 (s,T) =W20 [p(s,T)] while p(s,T) is deter­
mined from the condition 

p 

~ d~ I I;_ m = -c - "'o· 

If we now use (10'), (12), and (14) to go from 
W2 to W, we get 
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+ioo+oo 
W (q, 1:) = (2rri)-1 ~ ~ exp {+ [(q'- p)2 - (q- s)2]} 

-ioo -oo 

X W 0 (q') Jj_ (p) ds dq' = (2rri)-1 

h (s) 

+ioo +oo 
X~ ~ W'0 (q')exP{f[(q'-p)2-(q-s)2J}dpdq'.(16) 

-ioo-oo 

Substituting W0 ( q') = o ( q' - q0 ) into (16) we find 
the source function of Eq. (9). 

Qe 

~ dp(Fa(P)+t-t 0 =0, (19) 
Q, 

i.e., satisfies the differential equation 

Qe + Fe(Qe) = 0. (20) 

If we also take into account that as e - 0. 
Fe ( Qe) - F ( Qe), according to its definition, 
while (18) goes over into a o -function, we get in 
the limit e = 0 

+ioo W (Q, t; Q0 , t0} = o [Q- Q (Q0 , t)], (21) 

W (q, 1:; qo, 'to)= (2rri)-1 ~ exp {i- [(qo- P)2-(q- s)21} dp, where Q ( Q0, t) is the solution of the original non-
-too 

s (p, ~) 

~ d~;J;.m +'t-'to = o, 
p 

+co 

I;. m = y~1C ~ e-(q-~)'120 (q) dq, (17) 

which also gives the probability density for a tran­
sition of the circuit from a state Q0 at time t0 

to a state Q at time t, if the current-voltage 
characteristic i = f ( q v' e/C ) = G ( q) of the non­
linear resistance which enters into the circuit is 
known. 

To study Eq. (17) further we perform a change 
of variables, putting 

p- q0 = ~ (C8)-'1•, 

after which we get, shifting the contour over which 
we integrate, 

+too 

W (Q, t; Qo, to)= 21Ci~e ~ exp {z~e le2- (Q- '11 (e, t))zl} de. 
-ioo 

11 (~.t) 

~ dp/Fe(p)+t~t0 =0, 
Q,+i; 

+oo 
1 (' [ (Q'-p)2 ] 1 1 

Fe(p)=V27CC8 j exp- zce F(Q)dQ, 
-00 

F (Q') = f (Q' /C). 

We shall investigate the behavior of W as 
®- 0. In that case 

(2rrC8)-'1' exp (e2 1 2C8)--+ o (x), 

where x = - i~ so that 

W (Q, t; Qo, to) 

-> (2rrC8)-';,exp {- [Q- Qe (Q0 , t)]2 I 2C8}, 

(17') 

(18) 

while Qe ( Q0, t) is determined by the condition 

averaged equation 

Q + f (Q ;C)= 0 (7') 

a result which we should have expected. 
If we now go over to the case ® "' 0 we shall 

"spread out" the original o -shaped distribution 
(21) over the neighborhood of the trajectory given 
by (7'). 

Putting rJ ( L t ) = Qe ( Q0, t ) + rJ' ( ~ , t ) we find 
rJ' from the condition 

Qe-t-11' 

~ dp!Fe(p)+t-t 0 =0. (22) 
Q,H 

Expanding (22) in the neighborhood of ~ = 0 in 
powers of ~, ry' and using (19) we get 

'Yj' = 8 (Q0 , t) ~. 

8 (Qo, t) =Fe (Qe) /Fe (Qo) = Qe/ Qo. (23) 

After that substituting (23) into (17), and evaluating 
the integral for W, we find finally 

W (Q, t; Q0 , t 0 ) 

= [2rrcr (Q0,t)]-'1'exp {- [Q- Qe (Qo. t)j2 I 2cr (Q0 , t)} (24) 

cr (Qo. t) = ce [ 1-82 (Qo. t)]. (25) 

In the approximation under consideration the 
Brownian motion of a non-linear system is thus 
described by a Gaussian distribution for the tran­
sition probability while the dispersion of this dis­
tribution depends not only on the time, but also on 
the initial conditions, according to (23) and (25). 
The center of the distribution (the average value 
of the coordinate ) is Qe ( Q0, t ) . 

The average value of the coordinate satisfies 
Eq. (25) which is in general different from the 
non-averaged Eq. (7'). It follows from the defi­
nition of Fe ( Q) [see the third equation of (17)) 
that this difference is only absent for linear sys­
tems (Fe ( Q) ""' Q). and for nonlinear systems 
it vanishes only when there is no thermal noise 
(®=0). 
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In conclusion I express my gratitude to Prof. 
Ya. P. Terletskil' for his interest in this paper. 
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