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Beam electrons and plasma oscillations are regarded as two subsystems. A kinetic equa
tion describing the interaction between the beam and plasma is obtained on the assumption 
that the beam does not change the properties of the plasma and that the plasma state is spe
cified by its equilibrium parameters. The expression for the decelerating force calculated 
on the basis of this equation includes losses due to electron-electron collisions as well as 
those due to the excitation of plasma oscillations. A more general case is considered in 
which neither of the subsystems is in thermal equilibrium. The solution of a set of nonlinear 
equations for the beam electron distribution function and the electric potential is considered 
for this particular case. The results are used to account for the rapid energy transfer from 
beam electrons to plasma electrons, which was first observed by Langmuir. 

IN calculating the energy losses of electrons mov
ing through a plasma it is customary to consider 
separately the losses resulting from short-range 
interactions (electron-electron collisions) and 
those resulting from the excitation of plasma os
cillations. 

The calculation for electron collisions results 
in the following expression for the decelerating 
force: 

F1 = (ewLfv0 ) 2 In (rdfa), (1) 

where e is the electron charge, w L = V 47Te2n/m 
is the Langmuir frequency, v0 is the velocity of 
electrons entering the plasma, a = e2 /mvij and 
rd is the Debye shielding distance. Equation (1) 
can be obtained from Landau's kinetic equation1 

or from the corresponding Fokker-Planck equa
tion, where (1) represents the systematic frictional 
force exerted by plasma electrons on a beam elec
tron.1•9 

The decelerating force resulting from the dis
tant part of the interaction is usually calculated 
in the approximation of the given particle motion. 
The following expression is obtained:2- 8* 

F 2 = (ewLfv0?_1n (v0/vr). (2) 

It follows from (1) and (2) that the energy losses 
resulting from near and distant interactions are 
of the same order of magnitude. 

*The results obtained by various workers differ in the loga
rithmic term. 
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It was established very early by Langmuir that 
an electron beam in a plasma is scattered much 
more rapidly than (1) and (2) indicates. Langmuir 
suggested that this extremely rapid scattering is 
associated with the excitation of plasma oscilla
tions; this was later confirmed experimentally 
(see reference 10, for example). 

The problem has been investigated theoretic
ally in papers by Vlasov} Bohm and Gross3 and 
others. In these papers it is assumed that the 
velocities of electrons entering the plasma are 
modulated as they traverse the double space
charge sheath and that the electrons then form 
bunches of different densities, as in a klystron 
oscillator. Regions of maximum beam density 
are also regions of strong scattering. However, 
as will be seen below, there is considerable anal
ogy with the operation of a traveling-wave tube. 11 

We shall now briefly indicate the results obtained 
in the two parts of the present work. 

Following Bohm and Pines, 12 the Hamiltonian 
for beam and plasma electrons is 

where A is the vector potential of the longitudinal 
electric field ( E = - ( 1/ c) BA/Bt; curl A = 0), and 
N is the number of electrons in the system. With 
A as the field coordinate we have the momentum 
II = - E/ 47Tc. The Fourier series for A and II 
are 
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A -. /4 rcc2 ~ a Q(i) sin kq I1 _ 1 "\,1 pU> sin kq 
= Jl v.LJ k k coskq, - r==.LJak k coskq. (4) 

k,j V 4rcc2V k,j 

Here ak is a unit vector. In (4) and hereinafter 
the upper function pertains to j == 1 and the lower 
function to j = 2. 

The state variables of the system will be the 
electron coordinates and momenta, qi and Pi, 
and the coordinates and momenta, QM) and PM), 

of plasma oscillators with wave numbers k < kct· 
Here kct :::; 1/rd. Substituting (4) into (3) and sep
arating terms with k < kd from those with k > kct· 
we obtain the following Hamiltonian in linear ap
proximation: 

Here the first term represents the kinetic energy 
of the electrons, the third term is the energy of the 
plasma oscillations with frequenc:y WL and k < kct, 
the second term is the interaction energy of plasma 
oscillations and electrons, and the last term repre
sents the screened (near) part of the electron in
teraction energy. 

We introduce the distribution function of elec
trons and plasma oscillations f (qi, Pi, QM), PM), t ), 

which specifies the probabilities of different states 
of the system. By means of (5) we obtain the follow
ing expression for f: 

of , { P; e -./4; (f) sin kq;} !J.... 
at '"t' lJ m- m Jl jT ~ akQk cos kq; oq; 

i k.i 

~ { pU> _!]_ _ w2 QU) _!!__} + L.J k 8Q(i) L k apU) 
k,/ k k 

"' a "" . of - ~ 8q1 ~ U (!q; - Qij) 8P,. 
t I 

+ (p ·a )sin kq1 _!!__} 
• k cos kq1 ap~> = 0. 

In the first part of the present paper we obtain 
from (6) approximate kinetic equations for the 
electron distribution function f1 ( q, P, t) and 

(6) 

for F 1 ( Qg), P g>, t), which is the coordinate 
and momentum distribution of plasma oscillations 
with the wave vector k. 

The kinetic equation obtained for f1 differs 
from the familiar equation of Landau by taking 
the excitation of plasma waves into account be
sides electron -electron collisions. In linear ap
proximation this becomes the Fokker-Planck 
equation in momentum space, with the systematic 

frictional term consisting of two parts correspond
ing to (1) and (2) for the decelerating force. 

The systematic frictional term in the kinetic 
equation for F1 corresponds to the damping coef
ficient of plasma oscillations obtained by Landau. 13 

As already noted, under certain conditions the 
transfer of energy from nonequilibrium electrons 
to plasma electrons occurs at distances consider
ably smaller than the relaxation lengths obtained 
by means of (1) and (2). The existence of this 
Langmuir effect indicates that the kinetic equation 
used in the first part of the present paper does not 
determine electron deceleration in all cases. In 
deriving this kinetic equation for the electrons we 
assume equilibrium states of the plasma electrons 
surrounding a given beam electron and of the plasma 
oscillations. However, with a sufficiently high con
centration of nonequilibrium electrons (such as 
beam electrons entering the plasma) these condi
tions are not satisfied and a set of simultaneous 
nonlinear equations for the beam and plasma must 
be solved to determine the beam deceleration. This 
will be done in the second part of the present paper. 

1. DERIVATION OF KINETIC EQUATIONS FOR 
f 1 AND Ft 

When (6) is integrated over all variables except 
the coordinate and momentum of a single particle, 
and then over all variables except the coordinates 
and momentum of a single oscillator with wave 
number k, we obtain the first two of a chain of 
equations for the distribution functions: 

8ft + ~ 8f1 _ !!_ -./~ \ ""a Q(f) sin kq 8ti>2 dQ(j) dP(f) at m aq m Jl v j ~ k k cos kq aq k k 
k,J 

± .!!_ -. ~~ "" (' (Pa ) kQUJ c'?s kq ati>2 dQUJ dPU> 
m Jl v .LJ j k k ''" kq ap k k 

k,j 

- n :q ~ U (I q -q'l) ~~ dq' dP' = 0, (7) 

iJF1 +"" pU> iJF1 ~ 2 QU> iJF1 
ot .LJ k iJQ(j) - L.J W L k i]pU) 

I k i k 

!!_ -. ,1'4; \ " sinkq 8ti>2 + n m J1 iT j ~ (P ak)cos kq ap~> dq dP = 0. 
I 

(8) 

Here <I> 2 ( q, P, QU), PM), t) is the second mixed 

distribution function, f2 ( q, P, q', P', t) is the 
second electron distribution function and n = N/V 
is the average number of electrons per unit volume. 

Equations (7) and (8) relate the first and second 
distribution functions. In a similar manner we can 
obtain equations for the three functions <I> 2, f2, F2 
(second distribution functions ) . 

The equations for the second distribution func
tions contain third distribution functions etc. In 
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order to obtain an approximate closed set of equa
tion we follow Bogolyubov and Gurov14 in introduc
ing the following approximate distribution functions: 

Ia = Mdi> <Da = MtFt and so on (9) 

l2 = fdt + G(q, P, q', P', t) (10) 

<D2 = ftFt + g (q, P, Q~>, p~>, t), (11) 

where G and g are correlation functions which 
are proportional to a small parameter (the ratio 
of the interaction energy to the kinetic energy). 

We shall first consider the case f1 ( q, P, t) = 

f1 ( P, t), i.e., a uniform first distribution function 
of the electrons. In this approximation, using the 
approximations introduced above for the distribu
tion functions, from (7), (8) and the corresponding 
equations for the second distribution functions we 
obtain the following equations for f1, F1, g, and 
G: 

ar1 + :_-.. ~~ -v \' (Pa ) kQ<i> cos kq F dQu>dpu> ar1 _ :_-.. ~~ at - m v v L.Jk . .) k k sin kq t k k ap - m v v 
,f 

X 'V \{a Q(j) sin kq i!H. + k (Pa ) Q(j) C?S kq ag} dQU>apUJ 
~ .\ k k cos kq aq k k sm kq ap k k 
k,f 

a 1 aa + n aq j U (I q- q'l) ap-dq' dP'; 

- e ... I 4TC 'V I (P )sinkq a 
- - n m V V LJ .) ak coskq ---w· g dq dP, 

i apk 

ao P ao P' aa 
ar+ii!aq-+ ii!aq· 

= ~ U (lq- q'i) {~~It- It:~~}= O; 

i!H. + ~ i!H. + ~ { p~l ~ -w2 Q(il --.!.L} at m aq .LJ aQU> L k apUl 
I k k 

_ .-..:._ -..I~''(P )kQ(j)coskqa{JF 
- T m v V L.J ak k sin kq ap t 

j 

e -.. I 4TC ~ (P )sin kq iJF1 I -m v jT f ak coskqapu> t· 

(12) 

(13) 

(14) 

(15) 

If the initial distributions for G and g are 
known, we obtain equations for f1 and F1 by 
solving (14) and (15) and eliminating G and g 
from (12) and. (13). Usually only the initial values 
of f1 and F1 are known, in which case, as in ref
erence 15, we can obtain approximate kinetic equa
tions for f1 and F1, which are valid only in such 
large time intervals that the initial values of G 
and g are no longer significant. 

The solution of (14) in this approximation can 
be represented by 

00 

c = ~ ~ u (/q -q'- (P ~P·)" j )a-c {~~It-It~~.}. (16) 
0 

By using (16) to eliminate G from the last term 
of (12), we obtain an expression corresponding to 
the right-hand side of Eq. (10.21) in Bogolyubov's 
book. 15 This is the approximate kinetic equation 
for a system of particles with Coulomb interaction, 
which was derived by Landau. The only difference 
is that in our case the expansion of the interaction 
potential energy contains only terms with wave 
numbers k > kct· Therefore by linearizing this 
term and assuming that f1 differs very little from 
a Maxwellian distribution, we obtain two terms de
scribing diffusion and systematic friction. The 
corresponding coefficients are finite for small k 
since the potential energy U ( I q - q' I ) contains 
only terms with k > kct in the expansion accord
ing to wave numbers. For large k the region of 
integration is limited by the condition k ,..... mv~ / e2• 

The resulting decelerating force agrees with (1). 
In order to obtain a closed equation for f1 we 

must eliminate the correlation function g from 
(12). To obtain an equation for f1 that is accurate 
up to quadratic terms in the ratio of potential en
ergy to kinetic energy, we may substitute for F1 
in (15) the equilibrium distribution for oscillations: 

Fi0> =A exp { -P~>';2xT- wt Q~l';2xT}. (17) 

The solution for g then becomes 

e ... ~~r ( (') p(i) ) g = +m V V j ~(Pak) k Q/_ COSWL'C- ~sinwL -c 
0 I wL ' 

sin [ ( p )] (j) X cos k q-m 'C {Pk COSWL'C 

Sul;>stituting ~18) into (12) and integrating over 
Q~) and p~), we obtain the following kinetic 

equation for f1 : 

(19) 

Here G is given by (16); for the diffusion coeffi
cient Da{3 and for the coefficient A of syste
matic friction due to the excitation of random 
plasma oscillations we obtain 
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(20) 

(21) 

The decelerating force F2 is obtained from (21) 
Transforming to spherical coordinates in (21) 

with the z axis along P, we obtain 

1 kd 

F2 = e2wL ~ ~ kdko( wL- ~ Y )ydy, y =cos e. (22) 
-1 0 

It follows from (22) that the decelerating force F2 

differs from zero only when P/m;::: wL/k, which 
indicates that particles with the momentum P can 
excite waves only with the wave number k > w Lm/P. 
We therefore have 

kd 
e2 roi ~ dk e2wl v 

F2=-2 - -k =-2 ln-. v v vr (23) 

"'L;v 

Here v = P/m and VT = rd/WL is the thermal 
velocity. The total force of systematic friction is 
given by the sum of F1 and F2 and does not de
pend on the choice of kd. (Compare with the cor
responding results obtained by Vlasov in reference 
2.) 

By using (7) and the corresponding equation for 
the second distribution functions we can obtain a 
kinetic equation for f1 in the inhomogeneous case. 
This complicated equation will not be presented 
here, but in the second part of the present paper 
we shall use a specific example to show that under 
certain conditions when the inhomogeneity of the 
distribution function is taken into account the de
celerating force acting on beam electrons can be 
considerably greater than would follow (1) and 
(23). 

We shall now consider the diffusion coefficient. 
The only nonvanishing terms in (20) are those with 
a = f3. With the z axis along P, the integral 
gives 

e2xT 2 v 
D3a= - 3 wLln-, 

V VT 

me2 w1_. 
Dn = D22 = ~ for v 2> vr. (24) 

In reference 9 Temko has calculated the diffusion 
coefficients associated with the screened part of 
the interaction. 

We note that in the stationary case the kinetic 
equation (19) is satisfied by a Maxwellian distri
bution. 

We shall now consider the kinetic equation for 
the coordinate and momentum distribution func
tion of plasma oscillations, which is obtained under 
the aforementioned assumptions by eliminating the 
correlation function g from (13) and (15). We in
sert the equilibrium value of f1 (the Maxwellian 

distribution) in the right-hand side of (15). The 
calculation gives the following equation for F1: 

aF, '"" { Ul oF, 1 2 Ul w~ _a_] aF, } 
Tt + .LJ pk aQU) - I (l)k Qk + xT 2 aQU) apU) 

1 k - WL k k 

'"" a•F, ,,_a_ en 
= 2pT .LJ apUl• + 2r LJ0pul (P~;. F,). 

I k I k 

(25) 

Here 

2 2 _j__ 3xT k2 -. j-:; 00L 2 
Wk=WL 'm ' r= Jl S-3-exp(-1;2rdk2). (26) 

rd k3 

From (25) we obtain an equation for the amplitudes 
QM), averaged by means of the distribution func-

tion F 1> of plasma oscillations with different 
numbers: 

The damping coefficient y of plasma oscillations 
agrees with that calculated by Landau. 13 We also 
obtain various statistical parameters of plasma 
oscillations from (25). 

2. NONLINEAR THEORY OF PLASMA OSCILLA
TIONS EXCITED BY AN ELECTRON BEAM 

The kinetic equations for f1 and F1 were de
rived on the assumption that at initial time the 
plasma oscillations (in the case of f1 ) or the 
electrons (in the case of F 1 ) are in thermal 
equilibrium. There are many problems in which 
this is not the case and neither of the subsystems 
(electrons and plasma oscillations ) is in thermal 
equilibrium. We shall now consider one of these 
problems. 

An electron beam enters the plasma in the x 
direction at the point x = 0 with a velocity that 
exceeds the thermal velocity of plasma electrons. 
We shall show that the decelerating force acting 
on the beam electrons due to the excitation of 
plasma oscillations is considerably greater than 
that given by (1) and (2). 

We at the very start separate beam electrons 
and plasma electrons in the Hamiltonian (5). Then 
the two equations (7) and (8) for the first distribu
tion functions are supplemented by another equa
tion for the beam electron distribution function. 

When determining the decelerating forces in 
the homogeneous case considered above it was 
important to take into account the correlation be
tween plasma electron variables and the variables 
pertaining to plasma oscillations, since in this 
homogeneous case the self-consistent term van
ishes. 

In the inhomogeneous case, with organized 
oscillations of the entire system excited at the 
expense of electron beam energy, in approximating 
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the second distribution function of electrons and 
plasma oscillations we may set 

(f) (f) <D2 (q, P, Qk , Pk , t) = /1F1, (28) 

since in the inhomogeneous case this multiplica
tive term is the principal term. 

Taking (28) for the second distribution function, 
we arrive at a system of self-consistent equations 
for the distribution functions of electrons and plas
ma oscillations. We do not present these equations 
because, farther along, in order to simplify a com
parison of our results with those of other writers, 
we shall use a system of self-consistent equations 
for the electron distribution function and scalar 
electric potential which were first investigated by 
Vlasov and thereafter by many other writers: 

at -l at ,_ !__~at _ 0 (29) at - V fu I m ax au - ' 

a2~a~' t) = 4r.e { ~ j (x, v, t) dv- n+} . (30) 
-00 

We assume that the charge of the electrons is neu
tralized by the positive ion background. 

In solving our problem of electron deceleration 
through the excitation of plasma waves we must 
obtain a wave solution of (29) and (30) which sat
isfies the given boundary conditions at x = 0. If 
cp is assumed to be a known function, by solving 
(29) with respect to cp and eliminating f from 
(30) we obtain an equation for the electric potential. 

From the solution of the linearized equations 
(29) and (30) it follows 3•11 •16- 18 that longitudinal 
plasma waves are generated growing in the x di
rection, the phase velocity of which is smaller than 
the average velocity v of the beam electrons. The 
rate of growth of the plasma waves depends on the 
velocity and concentration of the beam electrons, 
and with a sufficiently small concentration the 
growth may be as small as desired. 

For a sufficiently slow growth of plasma waves 
the solution for the potential in nonlinear approxi
mation can be obtained in the form 

cp (x, t) =<"flo (x) sin (wt- kx + '¥ (x)), (31) 

where cp 0 (x) and --¥ (x) are the slowly varying 
amplitude and phase, respectively. 

For a steady wave, i.e., the amplitude and phase 
are independent of x, the potential is a function of 
only x- Vpht. Then the solution of (29) with re
spect to cp becomes 

f(x,v,t) 

=r:D( --+-/'(v-<~h) 2 -2~cp(x-vpht)f' +~'ph)' (32) 

where <P is an arbitrary function; the + sign is 

taken for v > Vph and the - sign for v < Vph· 
Eliminating f from (30) by means of (32), we 
obtain the following equation for cp: 

\ · ~e~ (x- v 1)]-';, 1. 
~:~ = 4~e b fD (<')ll +-m (v _ v;h)2 dv- n+ J . (33) 

With a Maxwellian distribution used for <P, (33) 
agrees with the equation given by Bohm and Gross. 3 

Akhiezer and Lyubarskir 19 have solved an equa
tion similar to (33) * for zero temperature of plas
ma and beam electrons. In another paper Akhiezer, 
Lyubarski'l , and Fa'lnberg20 have solved the more 
general equation for nonzero plasma temperature. 
In this case <P may be represented by 

(34) 

Here n1 is the beam electron concentration, v is 
the electron velocity and <Po is an arbitrary func
tion of the energy. 

These solutions cannot be used directly in the 
problem of electron beam deceleration, since with 
small thermal losses the transfer of energy from 
the beam to the wave occurs in the region of wave 
buildup. We must therefore consider the process 
whereby the wave is established. 

It also remains an open question whether the 
solution for a growing wave will approach a solu
tion satisfying (33). Yet from this particular solu
tion we can infer that different conditions govern 
the application of the linear approximation to 
plasma and beam electrons. Indeed, when <P in 
the right-hand side of (33) is replaced by (34) or 
a more general expression allowing for the ther
mal spread of beam electrons, it is easily seen 
that when vph » ...J KT/m the linear approxima
tion is valid for plasma electrons if ecp « mvbh/2 
and for beam electrons if ecp « m (Vph -v)2/2. 
When m (Vph -v)2 « mvbh nonlinear effects will 
be manifested for beam electrons at considerably 
lower potentials than for plasma electrons. The 
use of the nonlinear equation only for plasma elec
trons can, of course, be justified only if the solu
tion yields a steady value of the amplitude such 
that ecpst « mvbh/2. 

Thus for a low concentration of beam electrons 
(but sufficiently large to maintain plasma oscilla
tions at the expense of beam energy), we can re
place (29) and (30) by a set of equations for the 
beam electron distribution f1 alone, with cp 
given by the wave equation for the plasma wave. 
The phase velocity and damping coefficient of the 
plasma wave will then be taken from the linear 
theory of plasma oscillations.2•13 

*The equations differ because of different constants of in
tegration. 
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We thus arrive at the following: set of equations: 

all + vall + _!_ i!.f at1 = 0 
at ax m axav ' 

cp = cp0 (x) sin (wkt- kx + \f" (x)). 

(35) 

(36) 

(37) 

Here wk has its previous meaning given in (26); 
y is the damping coefficient, whieh includes both 
that obtained by Landau [see (26)] and possible 
damping resulting from collisions. The functions 
cp 0 (x) and '11 (x) are, as previously, the slowly 
varying amplitude and phase. 

With (37) for the potential, we solve (35) for a 
given beam electron distribution function at x = 0. 
We denote the known function f1 at x = 0 by 
f! 0>(v<0> ), with jfi0>dv<0> = n+t·* The superscript 
0 pertains to the point x = 0. 

Since, for a given cp, (35), is a first-order 
linear differential equation, its solution is deter
mined by the solution of the characteristic equa
tion. In view of the slow amplitude and phase 
variations this equation can be written as 

d2x ek 
dt =-mcp0 (x) cos (wkt- kx + 'Y (x)). (38) 

When the functions v<0>(t, x, v) and t<0>(t, x, v) 
are obtained from (38), the solution of (35) can be 
written as 

f1 (x, v, t) = fio> (v<0> (x, v, t)). 

Using this solution, we obtain the following expres
sions for the density and current: 

p = - e ~ fio> (v<o> (x, v, t)) dv; 

j =- e ~ vfi0> (v<0> (x, v, t)) dv. 

Substituting this expression for p into the right
hand side of (36), we obtain a nonlinear equation for 
the potential. For low electron beam intensity the 
right-hand side of this equation is small; we can 
therefore apply a familiar method in the theory of 
nonlinear oscillations to obtain simpler equations 
for the wave amplitude and phase. This necessi
tates finding the Fourier components of p, assum
ing the beam amplitude and phase to be constant 
during integration. 

Let 

then 

*If the electron beam is modulated with respect to density 
or velocity the boundary form of the distribution will, of 
course, differ. 

2tr 

pU> = - + ~ ~~~~ [wkt- kxlfi0>(v<0> (x, v, t)) dvd (kx), 
0 

i = 1,2. (39) 

Equation (39) can be simplified by using the Liou
ville theorem dxdv = ctx<0>dv<0>, or since dx = vdt, 
ctx<0> = v< 0>dt<0>, we have dx dv = v<0>dt<0>dv<0>. After 
the substitution of variables t, v - t< 0>, v<0> in (39) 
we obtain the following expression for the Fourier 
components of the density: 

2tt 

p<1> =-":ph~~~~: [wkt(t<O>, v<o>, x) 
0 

- kx]fi0'(v<o>) v<o>dv<O)d (wkt<o>). (40) 

We can obtain p<i> from (40) if t (t<0>, v<0>, x) 
is known. When we return to the equation of mo
tion (38) and assume that the variable t in the 
right-hand side of this equation is a known function 
of the coordinates v<0> and t<0>, the energy inte
gral of (38) can be represented as 

X 

v = v<0> {I - _l!!:__ \ cp0 (x') cos [ wkt<0> + wk ( t - t<0l)- kx' 
mv<0)2 J 

0 

+ 'Y (x')] dx' f', 
and for the function t (t<0>, v<0>, x) we obtain the 
integral equation 

x x' 

t- t<O> =__!__I {1--~ \ cp0 (x") cos [wkf(O) 
v<O) ~ mv<0)2 J 

0 0 

+ wk(t- t<0>)- kx" + 'Y(x")] dx"} _,;, dx'. (41) 

Because of the complexity of (41) we can solve our 
problem without the use of numerical methods only 
in certain special cases. We shall now consider 
some of these cases. 

Let p, be a small parameter. We consider the 
case where the steady amplitude of the oscillations 
is such that ecp0 /mv<0>2 "' p,2 and the maximum of 
the excitation pertains to the waves for which 
(v<O> -Vph)v<O>"' p,. Under these conditions and 
with slowly varying amplitude and phase cp 0 ( x) 
and '11 (x), (41) can be simplified by expanding 
the square root in a series of which only the first 
two terms are retained. (41) then becomes 

X 

t - t<0l = ~l + e(~)S ~ (x-x') cp0(x') cos [ wkt<0> 
v mv 0 

+wk(t-ttO>)-kx' + 'Y (x')] dx'. (42) 

Equation (42) contains two parameters of length. 
One of these parameters, A= k (v<0> -Vph)/v<0> 
is determined from the excess of the electron 
stream velocity over the phase velocity of the 
rapidly growing plasma wave at x = 0; the second 
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parameter a characterizes the rate of change of 
wave amplitude and phase. Let us now consider 
the case when a/ A ~ Jl. 

We denote the ratio ecp 0 /m (v<O> -Vph)2 by X 
and obtain an approximate solution of (42) as a 
power series in X, assuming X ~ 1. Retaining 
terms up to x3 inclusively' we obtain the follow
ing expression for t-t<0>: 

w (t -t<Ol) =::a> -(X- d X 3) cos [wt<O>-Ax +'FJ 

(43) 

Substituting this into the integrand of (40), we inte
grate over t <O>, separate the terms in X to X 3 

and use the formula 

in which f denotes that the principal value of the 
integral is taken. In view of (39) we now obtain the 
following expression for the beam density: 

e• C [ 3 ( ec;>0 )2 (V<J>)]2[1(v-ii) 
p = - m J 1 - 8 m(v-vph)2 v (v-vph)" dv. cp 

(44) 

Substituting this into the right-hand side of (36), 
we obtain a nonlinear equation for the potential 
when the solution of this equation is sought in the 
form (37). 

When the ratio of beam and plasma electron 
concentrations is such that the parameter charac
terizing slowness of wave amplitude and phase 
variations is of the same order of magnitude as 
the parameter characterizing smallness of the 
right-hand side of the equation for cp, we equate 
terms of the same order of smallness and obtain 
the following equations for the wave amplitude and 
phase: 

dcpo I dx = ~cro- ~cp~, (45) 

The following notation has been used in (45): 

For self excitation of oscillations the coefficient 
a must be positive. When the damping coefficient 
y is given essentially by the damping coefficient 
of plasma oscillations, i.e., when collisions play 
a small part, the condition for self excitation 
becomes 

(8f<0l I av)v=uph > 0, 

where f<O> is the distribution function of all elec
trons (of both the plasma and beam ) at x = 0. 
This self-excitation condition corresponds to that 
given by other authors. 3, 16 -18 

To a sufficient degree of accuracy, the distribu
tion f1°> can now be specified as 

fi0) = nl (m I 21txTI)'I,exp [- m (v- v)2 I 2xTd. 

Here n1, T1 and v are the concentration, tem
perature, and velocity of beam electrons. With 
this boundary distribution function the autoex
citation condition is satisfied for the phase ve
locity region ~phv ~ .J KTtfm . The coefficient 
a is maximal for a wave with the phase velocity 
v-Vph = .JT1K/m. Since v, Vph » .JKT1/m 
and Vph = wk/k ~ WL/k, we obtain k ~ WL/v 
as the wave number of the most rapidly growing 
wave. For this wave we have 

It follows from the expression for a that for 
given values of the parameters v, n, T 1 and y 
a lower limit always exists for the concentration 
of beam electrons which can accompany autoexci
tation of oscillations. At lower concentrations an 
equilibrium velocity distribution for electron mo
tion through the plasma is established only as a 
result of the relaxation processes described in 
the first part of the present paper. 

The solution of (45) for the amplitude is given 
by 

tpo (X)= cp(O)eax [ 1 + i- (0)2 (e20:X- 1) r'/'. (47) 

Here cp <O> is the amplitude at x = 0. Let cp st be 
the steady-state value of the amplitude. For small 
x (x « 1/ a) the solution of (47) increases expo
nentially with x. For large x the amplitude ap
proaches 

tFst = V rxl ~- (48) 

When y is so small that the second term in the 
expression for a can be neglected we have ecpst 
~ 3KT1. 

It is evident from the above equations that the 
steady-state wave amplitude approaches zero for 
T1 - 0 i.e., for a single-velocity beam. It follows 
from the expression for a that in this case the 
self-excitation condition for plasma waves is not 
fulfilled. This does not mean, of course, that 
plasma waves are not excited when a single-veloc
ity beam passes through a plasma. The solution 
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being considered here is obtained when a « A 
and X ~ 1, under which conditions plasma waves 
actually do not arise in the hydrodynamic approxi
mation. The solution for a ~ A must be consid
ered to describe wave excitation ]ln this case. 

We shall now consider (46) for the variation of 
phase; this equation determines the variation of 
plasma wave number with increasing x ( b.k = 
- d 'll / dx). It follows from (46) that b.k is given 
by two terms, one of which depends on the ampli
tude. Both terms are of the order of J,l2k and are 
thus small compared with b.k, defined as the ini
tial difference between the velocity of beam elec
trons and the wave velocity, which is of the order 
of J.l. 

We now estimate the distance in which the en
ergy of beam electrons is transformed into the 
energy of plasma oscillations. For this purpose 
we require the ratio of the flux of plasma wave 
electrical energy in the region where a steady 
wave has already been established, to the elec
tronic energy flux at x = 0. This ratio is repre
sented by 

swave/ set= (n I n1) (erpo I mv2)2. (49) 

The order of magnitude of the ratio is estimated 
as follows. Since ecp 0 /mY. ~ J.l2 and a/k "' J.l2, 

it follows from the expression for a that the 
ratio of beam and plasma electron concentrations 
is n1 /n "' J.l4 • From (49) we find that for these 
values of the parameters the ratio of the energy 
fluxes is of the order of unity. Thus the beam 
energy is transformed into plasma. wave excita
tion in the distance l, which is equal in magni
tude to the distance within which a wave is estab
lished. Denoting the plasma wavelength by A., we 
have 

A < l :o(; 1 I rx. 

With currents of 20-25 rna, KT ~~ 1 ev, mv2/2 ~ 
20 ev, n1 = 3 x 108 sec-1 and n ~ 3 x 1010 sec-1, 

l is of the order of a centimeter. When these 
same numerical data are used, the relaxation 
length calculated from (1) and (2) is about 105 em. 

Looney and Brown21 have observed standing 
waves in a plasma traversed by an electron beam. 
Standing waves arise when a reflecting electrode 
is present. In order to determine the conditions 
for the generation of standing plasma waves by 
an electron beam the solution for the electric field 
can be obtained in the form 

tFs = rp0 (t) sin (wt + T' (t)) sin (srr.x;L), s = 1, 2, ... , 

where cp (t) and 'll (t) are the wave amplitude 
and phase, which vary slowly with time, and L is 

the length of the plasma in the direction of beam 
motion. The calculation shows that for n1 /n « 1 
the conditions for autoexcitation are best satisfied 
for frequencies and wavelengths given by 

wL=srr.vjL, /, 8 = 2Ljs. 

It follows that a transition from the fundamental 
oscillatory mode to higher modes occurs only with 
increased plasma electron concentration or reduced 
average velocity of beam electrons. 

In the experiments of Looney and Brown the 
beam electron concentration was the basic factor, 
i.e., ntfn » 1. An analysis of this case will re
gard the beam as the initial wave system. Under 
these conditions the square of the oscillatory fre
quency for a given mean velocity will be propor
tional to the beam electron concentration or to the 
current. 

Spatial periodicity was detected differently in 
the well-known work of Merrill and Webb, 10 which 
we shall not discuss here. We note only that grow
ing plasma waves can be detected by measuring the 
root-mean -square potential difference between two 
probes. When one of the probes is moved along the 
beam axis this quantity will be a periodic function 
of the probe separation with increasing amplitude. 
The spatial period of this function is the length of 
the most rapidly growing plasma wave, 

A= (2rrvjwL) (1- Vx1\!m/ v). 
The experiments of Merrill and Webb also indicated 
the existence of growing plasma waves; the observed 
spatial periodicity was in good agreement with the 
value of A. derived from this formula. 

We know that plasma waves can arise at the 
expense of the energy of relative electron -ion 
motion. The passage of strong current pulses can 
in this way cause an appreciable rise of the plasma 
temperature. 22 Plasma waves can be established 
by pulses of "'10-3 sec duration. The amount of 
energy transformed directly into heat will be de
termined by the damping rate of such waves. 

I take this opportunity to express my deep ap
preciation to Academician N. N. Bogolyubov and 
R. V. Khokhlov for their interest and valuable 
suggestions. 
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