
SOVIET PHYSICS JETP VOLUME 36 (9), NUMBER 5 NOVEMBER, 1959 

Tl!E NUCLEAR INTERACTION IN THE SCATTERING OF CHARGED PARTICLES 

FROM NONSPHERICAL NUCLEI 

A. D. PILIYA 

Submitted to JETP editor October 9, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1393-1397 (May, 1959) 

The nuclear interaction in the scattering of charged particles with energies close to the 
height of the Coulomb barrier from black, nonspherical nuclei is considered. 

IN a previous paper1 the author obtained an ex­
pression for the wave function of a charged particle 
scattered from a nonspherical nueleus, containing 
the nuclear amplitudes bfi,. The aim of the pres­
ent paper is to actually calculate these amplitudes 
for the case of a black nucleus.* This case has 
practical interest, since the condition of complete 
absorption of the incoming particles in the nucleus 
is, apparently, well satisfied for a particles 
(which are widely used in Coulomb excitation ex­
periments) in the energy region under considera­
tion ( E ~ 20 Mev). The determination of the nu­
clear amplitudes (23.1) is in general very involved, 
since the potential, and therefore the wave func­
tions, have quite different symmetries inside and 
outside the nucleus. The conditions for the joining 
of the wave function at the nuclear surface there­
fore lead to a complicated system of algebraic 
equations for the amplitudes b fi,. It is obvious 
that this system can be solved only numerically. 
However, this situation becomes very much sim­
pler in the case of a black nucleus, since it is 
known2 that in this case the wave function sa tis­
fies on the nuclear surface the condition 

:,(r'Y) =- iK (r'Y), (1) 

where K is a certain constant. With this boundary 
condition the amplitudes bfi, can be found without 
considering the solution in the internal region at all. 

1. BOUNDARY CONDITION FOR A DIFFUSE 
SURFACE 

In writing down the boundary condition (1), 
where K is the complex wave vector of the par­
ticle inside the nucleus, we assumed that the nu­
cleus has a well-defined boundary. In actual fact, 
the nuclear potential drops smoothly over a dis­
tance d which is of the order of magnitude of the 

*We shall use the notations of reference 1. Reference to the 
formulas of this paper will be made in the form, e.g., (21.1). 
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range of the nuclear forces. Since Kd ~ 1, this 
circumstance can have an appreciable effect on 
the scattering amplitude. 

We are interested in the region of energies 
close to the height of the Coulomb barrier. To 
take account of the diffuseness of the boundary 
,,.e can use the method proposed by Gribov. 3 He 
showed that, with an accuracy up to and including 
terms of order kd (where k is the wave num­
ber of the particle outside the nucleus ) , 

(2) 

in the diffuse surface region. Here u is the wave 
function multiplied by r, and V is the nuclear 
potential (the particle is assumed to be neutral). 
It is easily seen that the case of a charged particle 
is different from that considered in reference 3 
mainly by the fact that the role of the wave number 
k is here taken over by the quantity 

k' = V 2m I E - V c I I Ti, 

where V c is the Coulomb potential. Up to terms 
of order k'd, the wave function therefore satis­
fies Eq. (2), as before. 

We write the nuclear potential in the diffuse 
surface region in the form 

V _ ~ K2 [Ro(S) -r] 
-'2m v d ' 

where v is a dimensionless function with the 
property 

v(x)-" 1, 
v (x) ~o. 

x> l; 
x<-1. 

(3) 

(4) 

(5) 

At the internal end of the diffuse region we have 
again the old boundary condition (1). If, therefore, 
qJ 1 [ ( R0 ( (} ) - r )/ d] is a solution of equation (2) 
of the form 

'Pl~e-iKr 

'P1 ~a+ b (Ro (ll)- r] 
for v~ l, 
for v- 0, 

(6) 
(7) 

where a and b are constants uniquely determined 
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by the form of the function v, then the wave func­
tion multiplied by r is, in the diffuse region, 

u =A (8) 't\· (8) 

For values of r corresponding to v ,:::; 0, this 
function must join smoothly to the wave function, 
multiplied by r, in the external region, which we 
denote by u0• Expanding u0 ( r, (} ) in powers of 
R0 ( (} ) - r and discarding terms of order ( k' d )2, 

we obtain 

[ 1 auo I J uo = uo (Ro (8), 8) 1- -0 - or (R0(0)-r) • 
u (Ro) r=R, 

Comparing (9) and (7), we find the necessary 
conditions for equality of the two functions for 
v,:::; 0: 

(9) 

a (r'Y) I dr =- iKett (r'Y) for r = Ro (8), (10) 

where 

Keff = -ib I a. (11) 

The (complex) quantity b/ a depends on the 
form of the function v. For example, in the case 
v ( x) = 1/ ( 1 + e-x), which is important for appli­
cations, 

Kerr= K tanh 1tl I 1t1, (12) 

where y = Kd. Hence the diffuseness of the boun­
dary leads to the replacement of K by Keff in 
the boundary condition (1). 

2. THE SYSTEM OF EQUATIONS FOR THE 
AMPLITUDES bfi, 
If the wave function '11 is written in the form 

(24.1), the boundary condition (11) must be fulfilled 
for all functions (23 .1). 

We introduce the notations 

dF m (p) I dp = f to (p) F to (p), 

dGto(p)/dp=gm(p)Gto(p), (13) 

Fto[p(p.))- ( ) Gto[p(p.))- () 
pto - Cflm P. • ato -Ito P. • (14) 

Gto (p) = Hm (p)- iF en (p), (15) 

where p ( p. ) = kR0 ( p. ) , F m = F m [ p ( 1 ) ], and 
R0 ( p. ) determines the surface defining the shape 
of the nucleus according to (3). We use elliptic 
coordinates [see (14.1)]. If the weak dependence 
on p of the logarithmic derivatives fm and gm 
on the nuclear surface is neglected, the boundary 
condition (11) for the function leads to the equation 

where 

:Pw ([J.) <D1n (tl) = s· ~~:'ft·n (p.) <Drn (tJ.) 
!' 

+ i ~· ~~·Cflrn (p.) <D1·n (!J.), 
I' 

(16) 

b~· =- ~?dm <fm + iKeff )/Gin (gm + iKetf)· (17) 

The coefficients /3fi, can now be found by the 
same method as that used by Gol'din et al.4 for the 
approximate solution of the problem of the a de­
cay of a nonspherical nucleus. Thus we multiply 
(17) by ~rin (p. )/YnU (p.) and integrate over p.. 
At energies of the incoming particle below the 
height of the Coulomb barrier B, the ratio 
Yl!J (p. >hnn (p.) depends weakly on p. in the 
quasiclassical approximation (which we are con­
sidering here ) . ( The functions Yln ( J.! ) them­
selves do, of course, fluctuate strongly over the 
surface of the nucleus ) . Therefore all integrals 

~ • . Yw (p.) 
j <Dnn (p.) Ynn (p.) <Dm (11.) diJ. (18) 
-1 

are small for n c;r. l and can be neglected in our 
approximation (a special estimate shows that this 
involves an error of order {3 = AR/R). 

For the f3fi, we then obtain the following sys­
tem of algebraic equations: 

~?n = I?n- il]~?z·I?-n (fz•n + iKeff) 
I' 

X F m I (gm + iKeu) G z·n, (19) 

where 

(20) 

The terms under the sum on the right hand side of 
(19) are proportional to the factor Fm /Gzn, which 
decreases fast with increasing l (roughly speak­
ing, as exp ( -Z2/r)'V3). In a first approximation 
we can therefore retain only the first 2 or 3 terms 
in the sum. The /3fi, can then easily be expressed 
in terms of the integrals I~. If desired, the dis­
carded terms can be accounted for by a method of 
successive approximations. In order to calculate 
I?n• one must know the functions F m ( p) and 
Gzn ( p) near the classical turning point Po· Since 
we consider this problem in the quasiclassical 
approximation, we can use the approximate solu­
tion of equation (17 .1) in terms of the Airy func­
tion:5•6 

Fm (p) = (tia(• v (- t). (21) 

G m (p) = (t/g)''• u (- t), t = [ + ~ g'i, dp f' ' (22) 
p, 
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(23) 

where Po is the value of p for which g ( p ) = 0. 
v and u are the Airy functions tabulated by Fock. 6 

We can simplify the integral (23) by making use 
of the fact that we are only interested in energy 
values E very close to B, and therefore only 
in values p close to p0• We expand the expres­
sion under the root sign in powers of Po - p and 
retain only the first term. Then we have 

Fm (p) = c-'l, v (- x), Gw(p)==C-'1'u(--x), (24) 

where 

X= c'f, (p- Po), C = dg 1 dp for p = Po· 

It is easily seen that the next term is of order 
TJ [ (B-E )/B ]5/ 2• The above expression is there­
fore valid if the latter quantity is small compared 
to unity. 

3. LIMITING VALUE OF THE AMPLITUDES 
bfi, for E < B 

We obtain a particularly simple result, if the 
energy of the incoming particle is so much smaller 
than the barrrier height, that the sum on the right 
hand side of equation (19) can be neglected alto­
gether. 

For this we must satisfy the condition 

'Yj [(B- E)!B]'1• > 1, (25) 

sincethe"radial"functions Fm(p) and Gm(p) 
depend on the number l in essentially the same 
way as the corresponding Coulomb functions F z 
and Gz, so that 

Fm(P) _F0 (p) { 8 (B-E)'1•1_ 
Gzn(Pl ~Go(P)=exp -s'rl -~ J · 

The applicability of the adiabatic approximation 
used by us requires that, together with (25), also 

(B-E) I B 4:;:. 1. (26) 

The integral rr can be computed approximately 
by using the fact that the function cpm(fJ. )/ynQ(fJ.) 
has a sharp maximum at I fJ.I = 1. 

Introducing the new variable fJ. =' cos e, we 
can write, for e « 1: 

t?m(cos6)/1nn(cos6)=e-a0', (27) 

where 

a= [f m- gn0 l dp (6) I d (6 2) for 6 = 0. (28) 

Since dp/ d ( e2 ) ~ 2ry{3, the quasi -classical esti­
mate 

leads to 

(B-E\'1• 
a=4YJ~ -B-) . 

J[f the conditions (25) and (26) are satisfied, this 
quantity is practically always large in comparison 
with unity, and therefore only the values I fJ. I close 
to unity (i.e., e close to zero) are essential in 
the integral (20). n n 

Since e « 1, <I>m( cos e) ~ e , we have Izn ·~ 

1/a2Q+t. Up to terms of order 1/a2 we can 
therefore assume 

(29) 

For the evaluation of I~n one can use the repre­
sentation (20.1) for the function <I>m, replacing 
Yz0 (e, cp) by V(2Z+1)/47T J 0 [(Z+i)O] and in­
tegrating over e from zero to infinity. We then 
obtain the following result for the amplitudes bfi,: 

b?t- = 0, n =f=- o, (30) 

[ (n +1/2)2+ (k +1/2)2] I (n + 1/2) (k +If.) J (31) 
X exp 4a o 2a ' 

where r0 is the Bessel function of imaginary argu­
ment. 

The author expresses his gratitude to K. A. Ter­
Martirosyan for valuable advice and discussions. 
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