GEODESICS IN FRIEDMAN-LOBACHEVSKY SPACE

I. G. FIKHTENGOL' TS

Leningrad Institute of Precision Mechanics and Optics

Submitted to JETP editor January 6, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1322-1323
 (April, 1959)

WE consider the equations for the geodesics in the space in which the square of the line element ds has the form

$$ds^{2} = H^{2} \left(dx_{0}^{2} - dx_{1}^{2} - dx_{2}^{2} - dx_{3}^{2} \right), \qquad (1)$$

where H is some function of the variables x_0 and $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$. Taking the time coordinate x_0 as the independ-

Taking the time coordinate x_0 as the independent parameter, the equations for the geodesics are then written in the form (see, e.g., reference 1)

$$\ddot{x}_i - \dot{x}_i \Gamma^0_{\alpha\beta} \dot{x}_\alpha \dot{x}_\beta + \Gamma^i_{\alpha\beta} \dot{x}_\alpha \dot{x}_\beta = 0 \quad (i = 1, 2, 3).$$
 (2)

Here $\Gamma^{\nu}_{\alpha\beta}$ is the Christoffel symbol of the second kind; the dot denotes the derivative with respect to the variable x_0 ; greek indices run through the values 0, 1, 2, 3, and identical indices are understood to be summed from 0 to 3.

Starting with formula (1), we obtain the following expressions for the Christoffel symbol of the second kind:

$$\Gamma_{00}^{0} = \frac{1}{H} \frac{\partial H}{\partial x_{0}}, \quad \Gamma_{00}^{i} = \Gamma_{0i}^{0} = \frac{1}{rH} \frac{\partial H}{\partial r} x_{i}, \quad \Gamma_{0k}^{i} = \Gamma_{ik}^{0} = \frac{1}{H} \frac{\partial H}{\partial x_{0}} \delta_{ik},$$
$$\Gamma_{ik}^{i} = \frac{1}{rH} \frac{\partial H}{\partial r} (x_{i} \delta_{kl} + x_{k} \delta_{il} - x_{l} \delta_{ik}). \tag{3}$$

In these expressions $\delta_{ik} = 1$ for i = k, and $\delta_{ik} = 0$ for $i \neq k$; the Latin indices i, k, *l* run through the values 1, 2, 3.

With the expressions (3), the equations in (2) now take the form

$$\ddot{x}_i + \frac{1 - \dot{r}^2}{H} \left(\frac{1}{r} \frac{\partial H}{\partial r} x_i + \frac{\partial H}{\partial x_0} \dot{x}_i \right) = 0.$$
 (4)

If we now set¹ H = H(S), where $S = \sqrt{x_0^2 - r^2}$, then we finally obtain, according to (4),

$$\ddot{x}_i + \frac{\dot{r}^2 - 1}{S} \frac{H'}{H} (x_i - \dot{x}_i x_0) = 0,$$
(5)

where the prime denotes the derivative with respect to the variable S.

It is seen immediately that the relations

$$x_i = \dot{x}_i x_0 \tag{6}$$

yield $\dot{x}_i = \text{const}$; the functions x_i defined by them are therefore particular solutions of (5).

The relations (6) are used in a well-known way for the explanation of the phenomenon of the "recession of the galaxies," by regarding the quantities \dot{x}_i as the coordinates of the corresponding mass in the accompanying system of coordinates.

¹V. A. Fock, Теория пространства, времени и тяготения (<u>The Theory of Space, Time, and</u> Gravitation), GTTI, 1955.

Translated by R. Lipperheide 254

ON THE PRODUCTION OF PION AND MUON PAIRS BY THE ANNIHILATION OF HIGH-ENERGY POSITRONS

A. I. NIKISHOV

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor January 8, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) **36**, 1323-1324 (April, 1959)

The study of the processes $e^+ + e^- \rightleftharpoons \mu^+ + \mu^$ and $e^+ + e^- \rightleftharpoons \pi^+ + \pi^-$ is of interest in connection with the possibility of detecting deviations from local theory at distances $\sim 10^{-13}$ cm. If we describe the deviation by a factor $F(q^2)$ in the expression for the transition current, we get the cross-sections for these processes from the corresponding expressions of local theory by simply multiplying by the squares of the form factors $F(q^2)$ for the particles in question. Since in the annihilation of two particles $q^2 = -4E^2$ (in the center-of-mass system), the introduction of the form factors does not change the angular distributions for these processes. The values of the form factors for $q^2 < 0$ (annihilation of particles) cannot be obtained from the values of $F(q^2)$ for q^2 > 0 (scattering).*

The absolute squares of the matrix elements in the center-of-mass system, averaged over the initial spin states and summed over the final (for those particles having spin), are as follows:[†]

$$|M|^{2} (e^{+} + e^{-} \stackrel{\rightarrow}{\leftarrow} \mu^{+} + \mu^{-}) = \frac{1}{16E^{4}} \left\{ 1 + \left(\frac{\mu}{E}\right)^{2} + \frac{p_{\mu}^{2}}{E^{2}} \cos^{2} \vartheta \right\},$$
$$|M|^{2} (e^{+} + e^{-} \stackrel{\rightarrow}{\leftarrow} \pi^{+} + \pi^{-}) = \frac{p_{\pi}^{2}}{32E^{4}} \sin^{2} \vartheta.$$

We note that the matrix elements for the processes involving π mesons are small for nonrelativistic values of the velocities v_{π} . The maximum of the angular distribution for this process lies in the plane perpendicular to the line of impact.

The corresponding differential cross-sections in the center-of-mass system are:

$$\begin{aligned} d\sigma \left(e^{+} + e^{-} \to \mu^{+} + \mu^{-} \right) &= F_{\mu}^{2} F_{e}^{2} \frac{r_{0}^{2}}{16\gamma^{2}} \left\{ 1 + \left(\frac{\mu}{E}\right)^{2} + \frac{p_{\mu}^{2}}{E^{2}} \cos^{2} \vartheta \right\} d\Omega \\ d\sigma \left(e^{+} + e^{-} \to \pi^{+} + \pi^{-} \right) &= F_{\pi}^{2} F_{e}^{2} \frac{r_{0}^{2}}{32\gamma^{2}} \frac{p_{\pi}^{3}}{E^{3}} \sin^{2} \vartheta d\Omega, \\ d\sigma \left(\mu^{+} + \mu^{-} \to e^{+} + e^{-} \right) \\ &= F_{\mu}^{2} F_{e}^{2} \frac{r_{0}^{2}}{8\gamma^{2}} \frac{1}{v_{rel}} \left\{ 1 + \left(\frac{\mu}{E}\right)^{2} + \frac{p_{\mu}^{2}}{E^{2}} \cos^{2} \vartheta \right\} d\Omega, \\ d\sigma \left(\pi^{+} + \pi^{-} \to e^{+} + e^{-} \right) &= F_{\pi}^{2} F_{e}^{2} \frac{r_{0}^{2}}{\gamma^{2}} \frac{v_{\pi}}{32} \sin^{2} \vartheta d\Omega, \end{aligned}$$

 $r_0 = 2.8 \times 10^{-13}$ cm; $\gamma = E/m$; μ and m are the masses of meson and electron; E is the energy of a particle; $v_{rel} = 2v_{\mu}$ is the relative velocity of the mesons in the beam; v_{π} , p_{π} are the veloc-ity and momentum of a π meson; ϑ is the angle between the colliding and emerging particles; $q^2 = -4E^2$; $\hbar = c = 1$.

In the limit v_{π} , $v_{\mu} \approx c$ we get for the cross sections integrated over the angles

$$\sigma (e^+ + e^- \rightarrow \mu^+ + \mu^-) / \sigma (e^+ + e^- \rightarrow \pi^+ + \pi^-) = 4F_{\mu}^2 / F_{\pi}^2$$

We note that the probability for decay of the bound system $\mu^+\mu^-$ into e^+e^- is given by

$$w = |\psi(0)|^2 (v_{rel} \sigma)_{v_{rel} = 0} = 4 \cdot 10^{11} \operatorname{sec}^{-1} \approx w_{\mu^+ + \mu^-} \to 2\gamma.$$

Because of the small velocities v_{π} the corresponding probability $w(\pi^+ + \pi^- \rightarrow e^+ + e^-)$ is vanishingly small.

If for an estimate we set F = 1 for all particles, the largest values of the total crosssections are of the order $10^{-30} - 10^{-31}$ cm².

Finally we note that if in the process $\pi + N \rightarrow N + e^+ + e^-$ the angular characteristics of the pair do not differ strongly from those for the process $\pi^+ + \pi^- \rightarrow e^+ + e^-$, then it may be possible to distinguish it experimentally, in spite of the very large background of pairs from the decay $\pi^0 \rightarrow e^+ + e^- + \gamma$.

In conclusion I express my gratitude to I. Ya. Pomeranchuk, I. L. Rozental', and E. L. Feinberg for fruitful discussions.

*It is possible that this bears a relation to the fact that the average multiplicity of the mesons from the annihilation of antinucleons is somewhat larger than the value given by the statistical theory with $R = 1.4 \times 10^{-13}$ cm.¹

[†]The production of meson pairs by the annihilation of positrons was first discussed by I. Ya. Pomeranchuk and V. B. Beresterskiĭ.² In their paper a factor 4 is omitted from the expression for $\sigma(e^+ + e^- \rightarrow \mu^+ + \mu^-)$. ¹Belen'kiĭ, Maksimenko, Nikishov, and Rozental', Usp. Fiz. Nauk **62**, No. 2, 1 (1957).

²V. B. Berestetskil and I. Ya. Pomeranchuk, J. Exptl. Theoret. Phys. **29**, 864 (1955), Soviet Phys. JETP **2**, 580 (1956).

Translated by W. H. Furry 255

ON PAIR PRODUCTION BY THE COLLISION OF TWO CIRCULARLY POLARIZED GAMMA-RAY QUANTA

F. S. SADYKHOV and B. K. KERIMOV

Moscow State University

Submitted to JETP editor January 10, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1324-1326 (April, 1959)

HE present note presents the results of a calculation of the electron-positron pair production in the collision of two circularly polarized γ -ray quanta, with account taken of the longitudinal polarization of the pair particles. An examination of this problem is of definite interest, since beams of γ -rays of high energy are now available ($E_{\gamma} \sim$ 0.5 - 1 Bev).^{1,2} The circularly polarized γ -rays are produced in the deceleration radiation of longitudinally polarized high-energy electrons,³ and also in nuclear β -decay processes.⁴

The equation that describes the process $\gamma + \gamma' \rightarrow e^- + e^+$ is of the form

$$D\psi_2 = \{U(x) D^{-1}U(x') + U(x') D^{-1}U(x)\}\psi_0, \qquad (1)$$

where ψ_0 is the wave function of the initial state and ψ_2 that of the final state, D is the Dirac operator, and $U(\kappa)$ and $U(\kappa')$ are the operators for the interaction of electrons with the quanta having the momenta $\hbar\kappa$ and $\hbar\kappa'$. The polarization vectors $\mathbf{a}_l \equiv \mathbf{a}_l(\kappa)$ and $\mathbf{a}'_{l'} \equiv \mathbf{a}_{l'}(\kappa')$ of the quanta are taken in the form^{5,6}

$$\mathbf{a}_{l} = \left(\beta + il\left[\mathbf{x}^{0}\beta\right]\right) / \sqrt{2}, \quad \mathbf{a}_{l'}^{'} = \left(\beta + il'\left[\mathbf{x}^{'0}\beta\right]\right) / \sqrt{2}. \quad (2)$$

Here β is a unit vector perpendicular to the momenta of the γ -ray quanta, $\kappa^0 = \kappa/\kappa$, and $\kappa'^0 = \kappa'/\kappa'$. In the case l = l' = 1 we have quanta with right-handed polarization (the spins of the quanta are in the direction of motion), and for l = l' = -1 we have left-handed polarization (spin opposite to motion). Using Eqs. (21) and (15) of reference 5 for the total cross sections for electron-positron