GEODESICS IN FRIEDMAN-LOBACHEVSKY SPACE

I. G. FIKHTENGOL' TS

Leningrad Institute of Precision Mechanics and Optics

Submitted to JETP editor January 6, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 1322-1323
 (April, 1959)

WE consider the equations for the geodesics in the space in which the square of the line element ds has the form

$$ds^{2} = H^{2} \left(dx_{0}^{2} - dx_{1}^{2} - dx_{2}^{2} - dx_{3}^{2} \right), \qquad (1)$$

where H is some function of the variables x_0 and $r = \sqrt{x_1^2 + x_2^2 + x_3^2}$. Taking the time coordinate x_0 as the independ-

Taking the time coordinate x_0 as the independent parameter, the equations for the geodesics are then written in the form (see, e.g., reference 1)

$$\ddot{x}_i - \dot{x}_i \Gamma^0_{\alpha\beta} \dot{x}_\alpha \dot{x}_\beta + \Gamma^i_{\alpha\beta} \dot{x}_\alpha \dot{x}_\beta = 0 \qquad (i = 1, 2, 3).$$

Here $\Gamma^{\nu}_{\alpha\beta}$ is the Christoffel symbol of the second kind; the dot denotes the derivative with respect to the variable x_0 ; greek indices run through the values 0, 1, 2, 3, and identical indices are understood to be summed from 0 to 3.

Starting with formula (1), we obtain the following expressions for the Christoffel symbol of the second kind:

$$\Gamma_{00}^{0} = \frac{1}{H} \frac{\partial H}{\partial x_{0}}, \quad \Gamma_{00}^{i} = \Gamma_{0i}^{0} = \frac{1}{rH} \frac{\partial H}{\partial r} x_{i}, \quad \Gamma_{0k}^{i} = \Gamma_{ik}^{0} = \frac{1}{H} \frac{\partial H}{\partial x_{0}} \delta_{ik},$$
$$\Gamma_{ik}^{i} = \frac{1}{rH} \frac{\partial H}{\partial r} (x_{i} \delta_{kl} + x_{k} \delta_{il} - x_{l} \delta_{ik}). \tag{3}$$

In these expressions $\delta_{ik} = 1$ for i = k, and $\delta_{ik} = 0$ for $i \neq k$; the Latin indices i, k, *l* run through the values 1, 2, 3.

With the expressions (3), the equations in (2) now take the form

$$\ddot{x}_i + \frac{1 - \dot{r}^2}{H} \left(\frac{1}{r} \frac{\partial H}{\partial r} x_i + \frac{\partial H}{\partial x_0} \dot{x}_i \right) = 0.$$
 (4)

If we now set¹ H = H(S), where $S = \sqrt{x_0^2 - r^2}$, then we finally obtain, according to (4),

$$\ddot{x}_i + \frac{\dot{r}^2 - 1}{S} \frac{H'}{H} (x_i - \dot{x}_i x_0) = 0,$$
(5)

where the prime denotes the derivative with respect to the variable S.

It is seen immediately that the relations

$$x_i = \dot{x}_i x_0 \tag{6}$$

yield $\dot{x}_i = \text{const}$; the functions x_i defined by them are therefore particular solutions of (5).

The relations (6) are used in a well-known way for the explanation of the phenomenon of the "recession of the galaxies," by regarding the quantities \dot{x}_i as the coordinates of the corresponding mass in the accompanying system of coordinates.

¹V. A. Fock, Теория пространства, времени и тяготения (<u>The Theory of Space, Time, and</u> Gravitation), GTTI, 1955.

Translated by R. Lipperheide 254

ON THE PRODUCTION OF PION AND MUON PAIRS BY THE ANNIHILATION OF HIGH-ENERGY POSITRONS

A. I. NIKISHOV

P. N. Lebedev Physics Institute, Academy of Sciences, U.S.S.R.

Submitted to JETP editor January 8, 1959

J. Exptl. Theoret. Phys. (U.S.S.R.) **36**, 1323-1324 (April, 1959)

The study of the processes $e^+ + e^- \rightleftharpoons \mu^+ + \mu^$ and $e^+ + e^- \rightleftharpoons \pi^+ + \pi^-$ is of interest in connection with the possibility of detecting deviations from local theory at distances $\sim 10^{-13}$ cm. If we describe the deviation by a factor $F(q^2)$ in the expression for the transition current, we get the cross-sections for these processes from the corresponding expressions of local theory by simply multiplying by the squares of the form factors $F(q^2)$ for the particles in question. Since in the annihilation of two particles $q^2 = -4E^2$ (in the center-of-mass system), the introduction of the form factors does not change the angular distributions for these processes. The values of the form factors for $q^2 < 0$ (annihilation of particles) cannot be obtained from the values of $F(q^2)$ for q^2 > 0 (scattering).*

The absolute squares of the matrix elements in the center-of-mass system, averaged over the initial spin states and summed over the final (for those particles having spin), are as follows:[†]

$$|M|^{2} (e^{+} + e^{-} \stackrel{\rightarrow}{\leftarrow} \mu^{+} + \mu^{-}) = \frac{1}{16E^{4}} \left\{ 1 + \left(\frac{\mu}{E}\right)^{2} + \frac{p_{\mu}^{2}}{E^{2}} \cos^{2} \vartheta \right\},$$
$$|M|^{2} (e^{+} + e^{-} \stackrel{\rightarrow}{\leftarrow} \pi^{+} + \pi^{-}) = \frac{p_{\pi}^{2}}{32E^{4}} \sin^{2} \vartheta.$$

We note that the matrix elements for the processes involving π mesons are small for nonrela-