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THE calculation of statistical weights has been 
the subject of consideration in many papers (see, 
for instance, references 1 and 2 ). The most com­
plete results (in series form) are quoted in the 
review by Belen'kii et al. 2 These calculations 
can be considerably simplified. 

By definition 

W N = ~ dpr ... dpN o (h Pk- Po) o (z; Ek- Eo) 

= (21tt4 ~ d'' exp{- i,!Lp~} I]~ dpk exp {i ( 'Pk- 'oEk)} (1) 

(here summation over repeated indices is to be 
understood, and Tp.P~ = T • P0 -To Eo). The basic 
difficulty in evaluating the integral (1) is that the 
momentum integrals are very cumbersome, since 
Ek = -./ p~ + m~ . The difficulty is removed if we 
go over to the four-dimensional relativistically 
invariant functions 

Jk = ~dpkexp{i(-cpk--roEk)} 

= (2ot)a _aa [~(-r~- 'C2)+i~r('C~- 'C2)l (2) 
'to 

(see the definition of the ~ function in refer­
ence 3 ). The next step usually consists in sub­
stituting for the ~-functions their expressions 
in terms of Hankel functions, 2 after which, in 
practice, the only acceptable way to use the in­
tegral (1) is to expand it in series. 

If, however, we take advantage of the well­
known parametric representation of the ~ func­
tion3 
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we obtain for Jk 

"" 

(3) 

h =- 8TCi-r0 ~ a.kda.kexp [- ia.~.:(-r~- -c2)- im%/ 4a.~.:]. (4) 
0 

Now the integration with respect to T in Eq. (1) is 
carried out without any preliminary series expan-

sion of the integrand, making use of the following 
formula: 4 

~ d4' exp (- i'P + ia-r 2 ) c= ( r.2 1 ia2 ) exp (- i P 2 1 4a). (5) 

As a result we obtain 

v~ = m% I (E~- P~). (8) 

For v~ = 0 (the ultra-relativistic case), there 
is no branch point in the integral (7), and a straight­
forward calculation leads to the well-known expres­
sion1•5 

(0) ( 7t )N-I ( 4N- 4)! EgN-• 
w N = T (3N- 4)! (:!.N -:!.)! (2N -1)! 

(Here P0 has been put equal to zero, i.e., the 
center-of-mass system is used). 

(9) 

A correction to this formula, taking into account 
the fact that v~ ,t 0, can be calculated if 
exp ( - n:: v~ I f3k) is expanded in a series broken 
off at the second term: 

aN-4 N 
(I) __ ( ~)1\"-1 (4N- 6)! Eo 'l , 2 

WN - \ 2 (3N- 6)! (2N- 3)! (2N- 2)! Li ( lk) . (10) 
k=! 

There are no logarithmic terms present in this 
case, either, due to the presence of the f3k factors 
in the denominator of the integrand. However, they 
do make their appearance in the next approximation 
("'1'4). 

Thus, Eq. (6) .[or (7)] appears to be a suitable 
starting point for approximate representations of 
statistical weights. 
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RECENT papers have shown that the capture of 
injected electrons into orbits is due to the Coulomb 
interaction and that the capture of part of the elec­
trons becomes possible as a result of the loss of 
the remaining ones. Kovrizhnykh and Lebedev 
succeeded by an ingenious formulation of the 
kinetic equations in obtaining some general re­
sult.1 However, the mathematical difficulties of 
integrating the kinetic equations hide the physical 
picture of the process. 

Physically, the considered capture mechanism, 
which was proposed by Matveev, 2•3 is of importance 
in the initial phases of the capture process, although 
it in itself cannot lead to capture. This is a direct 
consequence of Poincare's theorem on conserva­
tive systems, if the following experimental data 
are considered. 

1) The time dependence of the magnetic field 
does not have an important influence on the capture. 
A direct experimental proof is contained in our 
earlier work,4•5 where all experiments on the cap­
ture were carried out in a de magnetic field. 

2) The capture takes place also on the flat por­
tion of the injection pulse.6 In contrast to Logunov 
et al., we find5 that the pulse fronts do not seem 
to be important in the injection into a de field. 

3) The captured charge increases with increas­
ing injection pulse length and reaches its maximum 
value at a pulse length corresponding to several 
tens of revolutions. The larger the injection cur­
rent the sooner saturation sets in. However, if 
the injection time is of the order of one revolution 
the captured charge is very small even for very 
large injection currents. 5 

From this one obtains the following picture of 

the process of injection into a de magnetic field. 
A few revolutions after the begin of the injection 
there appears a stationary state in the doughnut 
- the number of the injected electrons almost 
equals the number of lost electrons. Let us take 
a look at the Hamiltonian for an arbitrary electron 
which moves in the field of all the other electrons. 
As long as we do not take into account the micro­
structure of the charge distribution, the Hamilto­
nian does not depend on the time. If the electron 
does not strike the walls it will hit the injector 
after a few revolutions. 

The system is not conservative if one takes 
into account the statistical fluctuations of the 
charge density. As a result of the collective in­
teraction of the electrons, their density distribu­
tion approaches statistical equilibrium. 

The author 7 has investigated the equilibrium 
state of a toroidal electron beam employing sev­
eral simplifying assumptions. The equilibrium 
state is determined by two parameters: 

a= 2kTfEo, b = P/P0 , (1) 

where k is Boltzmann's constant, kT is the 
mean kinetic energy of the transversal electron 
motion, Eo = qV ( q = electron charge, V = 
injection voltage) is the energy of the azimuthal 
motion, and P = I/v3/ 2, where I= beam current; 
P0 = 3.33 x 10-5 amp/(volt) 3/2. 

In the case a» b the effective radius of the 
beam cross section is (in terms of the radius 
of the equilibrium orbit, r 0 ) Po = .fa and the 
distribution of the charge density is given by 

(2) 

where p is the relative distance from the beam 
center and amax = 2E0V/r~ is the maximum pos­
sible charge density (in MKS units ) . Experiments 
show that the distribution of the charge density 
agrees well with Eq. (2) and becomes established 
a short time after the injection. The figure shows 
the experimentally-observed equal-density curves 
in percent of amax; the values shown in a and b 
were measured after 20 and 100 revolutions after 
the termination of the injection, respectively. 

The statistical electron capture mechanism can 
be understood if one considers the cooling process 
of the beam. The loss of electrons to the walls 
and to the injector does not only decrease the 
number of the electrons in the beam but also de­
creases the mean transversal energy of the re­
maining electrons. As a result of this cooling 
the cross section of the beam decreases. The 
change of the number of electrons, .6.N, and the 
temperature parameter, .6.a, during the time 


