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S 0 far no decays of hyperons into nucleons and 
leptons (of the type A0 - p + e- + v) have been 
observed. This contradicts the assumption that 
the four-fermion interaction constant F, respon­
cible for this type of processes, is the same as 
that of the usual {:3 decay or p, meson decay 
(G = 1.41 x 10-49 erg-cm3 ).1 The decrease in the 
magnitude of F may be due to either renormali­
zation effects due to strong interactions which 
must exist in hyperon decay2 •3 or to a difference 
in the nonrenormalized constants. In either case 
an estimate of the order of magnitude of F is of 
interest. One way to obtain such ail estimate is 
to study the Ke3 and Kp,3 decays whose proba­
bility is determined by a matrix element of the 
same interaction that is supposed to lead to the 
{:3 decay of hyperons. Phenomenologically we 
may write this matrix element as follows 4•2•5 

<u!L + u,, [if (PK + {J") + ig (PK- ,0")1 

X (1--!- is) Uv) / V 4EKErt, (1) 

where f and g are real functions of the invariant 

Q2 = - (p K - p,.,)2 = m~ + m';, 

- 2mKE"; m!L. e <;; Q <;; mK- m,.,. (2) 

Using Eq. (1) we obtain for the probabilities for 
Ke3 and Kp,3 decays in which the 71' meson has 
an energy E7r in the K meson rest system the 
following formulas (in the case of Ke3 one may, 
of course, set me = 0) 

dW (£") = (mKP"dE",'48rr 3 ) (Q2 - m~. ,)2 Q-6 {4f2P';. 

X (2Q2 + m~. e)+ 3 (m!L,e I mK)2 [f (mk - m';,) + gQ2 ]2 }. (3) 

To obtain the total decay probability one must 
integrate (3) over E7r from m, e to 

2 2 2 ,_, 
(mK - m71' - mp,,e )l2mK. 

So far the energy distribution of 71' mesons 
in Ke3 and Kp,3 decays has not been studied so 
that the dependence of f and g on Q2 is not 
known. One may assume that within the range 

of Eq. (2) this dependence is weak. Then f and 
g may be replaced by some average values I 
and g and these quantities may be obtained from 
the total probabilities of Ke3 and Kp,3 decays. 
We assume that the K± meson lifetime is equal 
to6 1.224 x 10-8 sec and denote the branching 
ratios for the Kp,3 and Ke3 decays relative to 
the total number of K decays by f:3p, and f:3e 
respectively. Integrating (3) over E7r gives 

f! G = 0,57 Vfe; gIG 

= - 2.o Vf. + V17.6 ~~- -7.8 ~,. (4) 
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The dependence of glf on f:3p, I f:3e is shown in 
the figure as well as the experimental value of 
f:3p, I f:3e taken from references 6 - 9. None of the 
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The dependence of the ratio of the constants g/f on the 
ratio of the probabilities of Kl-' 3 and Ke3 decays. 

experiments are in contradiction with a value of 
f:3p, I f:3e between 0. 7 and 1, i.e., glf between 0 
and 2 and, in particular, g = 0 (in which case 
f:3p,lf:3e = 0.7). With g = 0 and f =I= const, the 
interaction leading to (1) is in coordinate repre­
sentation given by 

(5) 

where, according to Eq. (4), I= 0.13 G (here we 
take f:3e = 0.051 ).9 On the other hand, it was shown 
by Feynman and Gell-Mann 1 that decays of the form 
71'- - 71'0 + e- + v should exist, analogous to the Ke3 

decays and described by a direct interaction 

(6) 

A comparison of the constants shows that I is 
eight times smaller than the G appearing in Eq. 
(6). If one assumes, in analogy with Eq. (6), that 
[ is of the same order as F, where F is the 
constant (more correctly, some sort of an aver­
age form factor) giving the strength of the four 
fermion interaction responsible for hyperon {:3 
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decay, then one would expect F to be an order of 
magnitude smaller than G. An analogous quench­
ing takes place in the form factor responsible for 
the KJ.L2 decay. 6 

Probabilities of hyperon decays 

Decay mode w 10' T ('j WT 

-AO--p +e- + v 5.8-10 5 0.277 1.6-10-4 

AO-->p +p.-+~ 9.4·104 0.277 2. 6 ·10-5 

:E-~ n + e- + ':: 3.4-106 0.167 5.7·10-4 

:E-___. n +p.- + ':; 1.5·106 0.167 2.5-10-4 

s- -- A0 + e- +-:; 1.2-106 -1 1.2·10-• 
s- ___. A0 + p.- + ':: 3.2-105 -1 3.2 ·10-4 

2- ---+ :EO + e- + 7; 1.4-105 -1 1. 4-10-4 

s- __. :EO + ~-'-- + -:; 2.1-103 -1 2.1-10-• 

In the table 1are shown hyperon decay probabili­
ties calculated on the assumption of an A-V inter­
action only with a constant F = 0.1 G. The results 
of the calculation using the exact formula10 (the 
decay probabilities given in reference 10 for 
F = G are somewhat high due to a mistake in the 
coefficient) are for all practical purposes the 
same as those obtained from an approximate for­
mula; for example for the decay ~ - p + J.L- + Z: 
one may use 

W= 1 ~:. (mA-mp)5 (::r<t>[(m:~mp)1 
<I> (x) = (1-4.5x- 4x2) V1-x 

+ ~- x2 Jn 11 + v~ II (7) 
4 1-V1-x 

(for the electron modes x « 1 and <I> f::l 1). It is 
seen from the table that the product WT ( T = ex­
perimental hyperon lifetime), which gives the frac­
tion of leptonic decays relative to the total number 
of decays, for F = 0.1 G is of the order of 2 x 10-4 

for A0 and 10-3 for~- and s- (inthelastcase 
the estimate is complicated by the absence of exact 
data on s- lifetime). In view of the fact that the 
number of A and ~ decays investigated so far 
is much less than 1/WT, the absence of leptonic 
modes among them is not surprising. 
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LET us consider the propagation of plane elastic 
waves in a magnetically polarized medium (i.e.,. 
one located in a constant, uniformly polarized 
magnetic field H0, or one which contains a con­
stant, uniform magnetization polarization 10 ) with 
uniaxial symmetry. Let us study the case in which 
a constant polarizing field H0 is oriented along 
the axis of symmetry, which we shall take to be 
the axis x3• Neglecting magneto-mechanical ef­
fects (i.e., magnetostriction and gyro magnetic 
effects) the non-equilibrium elastic processes 
are described by the relation: 1 

a,= ctlg + c{/J)q' Eg = (aui I axj + auj I axi) I 2, 

(1) 

where Uf = O'fj = uji are the components of the 
mechanical stress tensor, Ui are the components 
of the displacement vector, and the non -zero com­
ponents of the dynamic elastic modulus tensor, 
under the given conditions, are Cfg and Cfq 
(which depend on H0 or I0 ), given in reference 1. 
Here f, g, and q are the customary symbols 
for index pairs in the theory of elasticity. 


