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We have investigated the possibility of a superconducting state in metals for which the ele
mentary current excitations of the electronic system are (quasi-) bosons. This problem 
is solved, using Bogolyubov's method, in the framework of the "polar" many-electron model 
of a crystal. We have obtained criteria for a possible occurrence of a superconductil}g 
state in a system of charged bosons (low temperatures, low density of the quasi -particles, 
practically no "one-electron" transitions, and a negative sign of the exchange integral). 
The interaction between the current Bose particles, induced by the phonons, is attractive 
of character and opposes the appearance of superfluid properties of the latter. The crit
ical temperature of a superconductor with boson current carriers depends differently on 
the isotopic mass of the crystal ions than for the case of metals with a Fermi electron 
spectrum. This difference can be used as the basis of an experimental method to distin
guish superconductors of the "Fermi" and of the "Bose" type. 

l. The latest developments in the microscopic 
theory of superconductivity in references 1 and 2 
are connected with the assumption that the elemen
tary current carriers obey Fermi statistics. An 
investigation of the interaction of these fermions 
with the phonons of the crystalline lattice made it 
possible to establish the presence of a state with 
the observed property of superfluidity below some 
critical temperature. It is, however, fully possible 
that there are cases where the current carriers 
in the system of interacting electrons in the crys
tal satisfy with sufficiently large accuracy Bose 
statistics. 3 It is in that connection of interest to 
study the presence of superconducting properties 
in a metal with a Bose-type energy spectrum of 
the current carriers. The idea itself of connect
ing the phenomenon of superconductivity with the 
Bose-Einstein condensation of a gas of charged 
bosons is not new, but a number of existing in
vestigations in that direction (see, for instance, 
references 4 and 5) are, as a rule, methodic of 
character. 6 The reasons for this are, firstly, 
that the physical nature of the assumed charged 
bosons remains usually vague, and secondly that 
one considers a perfect boson gas, the thermody
namic properties of which differ from those ob
served in real superconductors (in particular, 
there is no phase transition of the second order 
in a perfect boson gas ) . These shortcomings are 
not present in the many-electron polar model7 •8 

where, on the one hand, one does not postulate 
from the outset a gas of charged bosons, but ob-
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tains it in the appropriate limiting cases (pre
dominance of the energy operator matrix ele
ments corresponding to two-electron transitions3 ) 

through an analysis of the different kinds of inter
action in the electron system, while, on the other 
hand, this gas turns out to be imperfect. It is 
therefore expedient to consider a system of 
charged polar Bose excitations, using the method 
applied by Bogolyubov in analyzing the properties 
of superfluidity of a weakly imperfect Bose-Ein
stein gas.9 

2. In the case of a crystal where the energet
ically most favorable state is the one of maximum 
polarization7•10 (the sites are either pairs or 
holes ) while the matrix elements corresponding 
to two-electron transitions predominate over the 
matrix elements of the one-electron transitions 
(I Jqq' I » I Lqq' I, where Jqq' is the integral 
of exchange between the orthonormal states 8q 
and 8 q', and Lqq' the corresponding transfer 
integral), the Hamiltonian of the polar model 
has in the second quantization representation 
according to (19) of reference 7 the following 
form: 

;;e = ~ 0 (q, q) nq +sA+ 1/ 2 ~ Bqq'nqnq' 
q q*q' 

+ ~ lqq' (cf>q'¥tct>t'¥q'- <l)qct>t<Pq•cf>tl. (1) 
q*q' 

where s is the number of pairs, A the energy 
eigenvalue of a pair, Bqq' the integral of the 
mutual Coulomb repulsion of two valence elec-
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trons in the states e q and e q'' respectively' 
nq the number of valence electrons in the state 
e q; G ( q, q) the energy of a valence electron in 
an isolated atom, corrected for its interaction 
with the other atomic cores, <Pq and <Pq the 
operators of the annihilation and the correspond
ing creation of a pair in the state Oq, and 'l'q 
and wq_ the corresponding operators for holes, 
satisfying according to reference 3 the plus-minus 
quantization relations: 

[<l>q<I>tJ+ = ['F'q"lf'tt = 1' 

[<l>q<I>tL = ['Fq'FtL = 0 (if q =f= q'), 

[<l>q<l>q·L = ['P'q'Fq·L = !<I>t <r>tL = !'P't':P'tL = 0. (2) 

Since in the case under consideration the condi
tion of maximum polarization: 

(3) 

is satisfied, it is expedient to introduce instead of 
the operators <Pq, <Pq, 'l'q, 'l'q the operators: 

(4) 

which because of condition (3) also satisfy the com
mutation relations (2). The Hamiltonian (1) has in 
the new operators (4) the following form 

where 

A1 =A+ 20 (q, q) and Cqq' = 2Bqq'- lqq'· 

Making in (5) the transition to wave vector 
space by means of the Fourier transformation 

bq = N-•;, ~ bket~<Rq, 
k 

bt = N-•;, ~bite-ikRq, 
k 

where N is the number of lattice sites, we get 

(5) 

(6) 

(7) 

:5£ = :Jeo + :J£1, (8) 

:5to = L (AI+~} (h) eikh)bitbk = ~ Ekb"tbk, (81) 
k h k 

X b"t,bk, bitA. . (82) 

Here 6 denotes a sum over the radius vectors 
h 

h performed from a fixed lattice site to the re-
maining lattice sites. According to reference 3, 
the operators bk satisfy, when the ratio s/N 
is small, the commutation relations for Bose
operators approximately. If we restrict ourselves 
accordingly to the case* s/N « 1 ("poor" metal11 ) 

*If there are only pairs and holes, (i.e., when the polariza
tion is a maximum) the condition s/N « 1 can be satisfied if 
the number of electrons 2s is less than the number of lattice 
sites N, which shall be assumed to be the case in the following. 

we must interpret JC0 as the energy operator of a 
system of non-interacting quasi-bosons,* and JC1 

as the energy operator of their interaction. The 
Hamiltonian (8), (81), (8 2) has basically the same 
form as the Hamiltonian (3.63), (3.64) considered 
in reference 9. Following, accordingly, the rea
soning given there we find in the first perturbation 
theory approximation 

E ... nk··· = s [ A1- ~ ~ C (h)]+~ LJ C (h) 
h h 

+ ~ nk ~ J (h) eikh + .Jr ~ nk, nk, ~ C (h) eih(k,-k,), (9) 
k h k,+k, h 

where 

We find now the condition that the lowest level is 
the one with occupation numbers 

i.e., the level 

if 
if 

k = 0 
k =f= 0, 

(10) 

(11) 

From (9) and (11) we find, if we use the nearest 
neighbor approximation and also restrict our
selves to considering the low temperature region, 
where ka « 1,11 

E ... nk ... -£0 = -1 ~ nk(ka)2 

k 

+ ~ ~ nk, nl<, [6- (k1 - k 2) 2 a 2 ) • (12) 

The expression within the square brackets is here 
positive by virtue of the condition ka « 1. More
over, C = 2B - J is also positive since B does 
not contain overlaps of the functions Oq, while J 
contains two such overlaps. The second sum on 
the right hand side of (12) is thus positive. The 
first term on the right hand side of (12) is posi
tive, if J < 0. If, however, J > 0, this term is 
negative and this coupled with the fact that in the 
case under consideration the interaction energy 
is assumed to be small compared to the kinetic 
energy, means that the right hand side of (12) will 
be negative. It is thus necessary that the exchange 
integral J be negative, if the energetically low
est state is to be the one for which all quasi
particles have k = 0, i.e., one for which con
densation takes place. 

*We use in this case the term "quasi-bosons" to emphasize 
once again that for s/N « 1 the quasiparticles behave with a 
high degree of accuracy, but even so still only approximately, 
as bosons. 
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Restricting ourselves, therefore, in the fol
lowing to the case J < 0, we have from (81) 

where 

(13) 

(14) 

We find now the energy necessary to take one 
quasi-particle from the system of quasi-particles 
moving all with the same wave vector k. To do 
this, we use (9) and consider the difference ~E 
between the energy Ek0 of the system moving 
with the wave vector ko and the energy Ek0-g 
of a system of ( s - 1) particles with wave vector 
ko and one particle with wave vector ko - g: 

11£ = Ek,-g- Ek, ~ ~ !J (h)\ eik,h 
h 

- ~ jJ (h)l ei(k,-g)h + ~ :2J C (h) cos(g, h). (15) 

" h 

In the last term of (15) we have dropped 1 com
pared to s. Using the nearest neighbor approxi
mation and (14), we can transform (15) to the form 

11£ = E (g)- (pgv0), (16) 
where 

E (g)= p~!2merr + (2s/ N) ~ C (h) cos (g, h); (17) 

Vo = Po/nleff (18) 

is the average velocity of the condensate corre
sponding to a quasi-momentum Po = nko. In the 
nearest-neighbor approximation the ratio E (g)/g 
has, according to (17), a minimum at the point: 

(19) 

In order that this minimum occur in the region 
where the low temperature condition ga « 1 is 
satisfied, the inequality 

s;N ~ 111/2C, (20) 

must thus be satisfied, and this is the case, if the 
condition s/N « 1 is obeyed, which is used, any
way, in the present paper. 

We introduce now the notation 

(21) 

whence 

E (g) > ttug. (22) 

From (16) and (22) we find 

!:;,.£ > pg [u- v 0 cos (pg, v0)], (23) 

or, since the maximum of cosine (Pg. v0 ) = 1, 
we have 

(24) 

From this it follows that if v0 < u an excitation 
of the moving condensate of pairs is energetically 
unfavorable. 

Applying Bogolyubov' s method to the real Bose 
gas of the quasi-particles of the polar model we 
are thus able to establish the occurrence of the 
property of superfluidity of the electron system 
of the crystal, if the following conditions are sat
isfied: low temperatures ( ka « 1 ) , poor metals 
( s/N « 1), practically no one-electron transi
tions, and a negative exchange integral (positive 
effective mass). 

3. The applicability of the results of the pre
ceding section are, strictly speaking, restricted 
to the region of sufficiently large k (and satis
fying at the same time the condition ka « 1), * 
when it has sense to use perturbation theory, as
suming the interaction energy to be small com
pared to the kinetic energy. One can convince 
oneself of this by applying to the problem con
sidered above the method of approximate second 
quantization. 9 Taking into account, namely, the 
fact that the main part of the quasi -particles is 
in the k = 0 state, and dropping accordingly in 
(82) the terms with triple and quadruple products 
of the bk (for k ~ 0 ) one can transform the 
Hamiltonian of the system under consideration 
to the form: 

::Je = (s2 IN) .:2J C (h)+ (A1- 6111) s 
h 

+ :2J (Ill k2a2 + 2; 0 ::2J C (h) eihk) btbk +(b~/ N) 
k h 

X~ C(h)eihkbitb±k+(bt2!N)::2J C(h)e'11kbkb_k, (25) 
k, h k, h 

where n0 is the occupation number of the k = 0 
state. 

Now making the transition to the new Bose op
erators9 

A b+ -•t,b A+ b -•1 b+ 
t'k = on o k• t'k = ono • k, 

and carrying out the canonical transformation9 

~k = (~k + Ak~±k)IV 1- A~' 

~t = <~t + Ak~-k)!V 1- A!' 

(26) 

(27) 

*From (29) it is clear that one can consider k, to be 
"large," I if it satisfies the condition ka » 2 (n0/N I J I 
IC(h)eikh)~. The region of "large" k which do not violate 
h 
the condition ka « 1 satisfies thus the inequalities 1 » ka » 
2 (n0/NIJ I I C (h) eikh)~. Since n0/N < s/N « 1, and IC(h)eikh 

h h 
is of the same order of magnitude as IJI, such a region clearly 
exists. 
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where 
Ak = (N;2n 0 .2] C (h) eikh) [E (k) 

h 

-Ill k2a2 + 2~0 ~ C (h) eikh], (28) 
h 

one can verify that the Hamiltonian (25) is diagon
alized, while one obtains for the energy of the 
quasi-particles the expression: 

E (k) = [~~" ~ C (h) e1kh 111 k2a2 + J2k4a4 J'". 
h 

(29) 

One sees from this easily that the result (1 7), ob
tained in Sec. 2 by perturbation-theory methods, 
is obtained for large values of k. 

In the region of small k it follows from (29): 

E (k) = 2 []V .2] C (h) eikh lliJ" ak , (30) 
h 

i.e., one obtains phonon-type (E"' k) excitations 
which leads also, as is well known, to the presence 
of the superfluidity property in a system of bo
sons.9•12 

4. Since the method of approximate second 
quantization and the application of perturbation 
theory lead to the identical result for large k, 
we can take expression (21) for the critical ve
locity u.* Since the left hand side of (21) depends, 
according to (17) and (19), only on J, C, a, and 
s/N, it follows from this that in the case under 
consideration the critical velocity u does not 
depend on the isotopic mass M (if we neglect the 
possible, very weak dependence of the lattice con
stant a on M). In that respect a gas of bosons 
differs from a gas of fermions where the critical 
velocity of superfluidity is determined from the 
relation u =we -ljp kff' according to reference 1, 
and thus depends on the ionic mass according to a 
u"' M 112 la~, through w. It is in this connection 
of interest to elucidate in how far the results ob
tained above are influenced by taking the interac
tion of the gas of bosons with the vibrations of the 
crystalline lattice into account. Putting 

Jqq' = l~q' + (L1Rq- L1Rq• )(grad Jqq' )0 + ... , (31) 

where the index 0 indicates the equilibrium values 
of quantities, and expanding the displacement .t..Rq 
of the g-th lattice site, caused by the temperature 
vibrations, from its equilibrium position in plane 
waves 

1 
ilRq = VN L.;Pti !~tiet(tiRql + i;~e-i(tjRql], (32) 

li 

*The arguments given below are also applicable, if we 
begin the determination of u with (30). 

where Pfj is the unit polarization vector and fj 
the wave vector, one can separate from (5) the 
following part of the Hamiltonian, which describes 
the interaction of the bosons with the lattice vibra
tions:11 

. (1iwf + + 
H ph = g ~ [ l/ 2V bk b k' IXf 

( k, 1 ) 
k'-k=f 

(33) 

where the O!f are the Bose operators for the pho
nons, V the volume of the system, and where the 
coupling constant g = 27TJa312/3vVM does not de
pend on M, since the sound velocity v"' M-1/ 2. 

If we now apply Frohlich's canonical transfor
mation13 we can separate a boson-boson interac
tion caused by the phonons of the form: 

H _ -~ 2 ~1iwf (1+~(k, 1))(1-~(k, f)) 
b(ph) - ., g ''V ;, 

£.. "" Ek'-f ~ e:k, -+ nwf 
f. k, k' 

(34) 

where .6. has the same meaning as in reference 
13. We note there that although an expression of 
the form (34) was obtained by Frohlich* for fer
mions, it retains its validity also for bosons, since 
in deriving (34) the commutation relations for the 
quasi-particle operators were in reference 13 only 
used to obtain the relation (2.26): 

atazata,- atarataz = olqatar- okrataz, 

and this relation retains its validity, as can easily 
be checked, also for Bose operators. 

It is clear from (34) that if I Ek' -f- Ek' I < tiwf 
the interaction induced by the phonons is attractive 
in nature and impedes thus the establishment of 
the superfluidity property in a system of bosons. 
Hb (ph) does here not depend on M, since in (34) 
there is a cancellation of w in the numerator and 
the denominator. 

In this respect there exists a similarity with the 
case of fermions where the interaction induced by 
the phonons is also by itself independent of M.2 

As far as the dependence on M of the critical 
velocity and of the critical temperature (isotope 
effect) is concerned, they occur in the case of 
fermions because the region of the effective at
traction induced by the phonons is restricted to 

*The interaction (34) was introduced by Frohlich 13 with
out taking Coulomb forces into account, but it is also valid 
when they are taken into account, if we understand by g the 
"screened" coupling constant. 14 



898 S. V. VONSOVSKII and M. S. SVIRSKII 

the region nw. In the case of bosons, however, 
when it is essential for the occurrence of super
fluidity that the repulsion dominates over the at
traction, a restriction of the consideration to the 
region of the effective phonon attraction is clearly 
not necessary. It follows that, although in this 
case the attraction induced by the phonons de
creases the magnitude of u (through the effective 
decrease of the magnitude of C which, by the 
way, improves the applicability of perturbation 
theory methods, expounded in Sec. 2 ) , the depend
ence of u on M is, apparently, in the case of 
bosons appreciably weaker than in the case of 
fermions. 

To conclude this section we note that the abov~
mentioned restriction on the region of the effec
tiveness of the attraction induced by the phonons 
leads in the case of fermions not only to a depend
ence of different characteristics of the supercon
ducting state on M, but also introduces accord-
ing to Bogolyubov' s theory1 (in contradistinction 
to the theory of Bardeen, Cooper, and Schrieffer2 ) 

a dependence of the criterion for superconductiv
ity itself on M. The Bogolyubov-Tolmachev cri
terion, p >PC [1 +PC ln (EF/c;;') ]-1 depends, 
namely, on w and thus on M, while the Bardeen, 
Cooper, and Schrieffer criterion p > PC does not 
depend on M. Thus, if one isotope of some metal 
is superconductive, all other isotopes of this metal 
will, according to the Bardeen, Cooper, and Schrief
fer criterion, also possess the superconducting 
property. According to the Bogolyubov-Tolmachev 
criterion, however, it is possible in principle that 
the heavy isotopes of a given metal possess the 
super conducting property, while its light isotopes 
(having a relatively larger value of w) will not 
possess this property. It is accordingly possible 
that when we go to lighter isotopes of superconduct
ing metals there is displayed a disappearance of 
the superconducting property itself, instead of an 
increase of T cr following from the T cr ,..., M -1/l 
dependence. Such an effect, if it does occur, will 
be superficially analogous to the disappearance 
of the superfluidity observed when one goes from 
He4 to the light isotope He3• It is necessary, how
ever, to note that in this case the disappearance 
of superfluidity is usually explained not through 
the lowering of M, but through the different sta
tistics ( He4: bosons; He3: fermions). 

5. What we have stated above leads to the con
clusion that the occurreDce in a given metal of 
the superconducting property is apparently not 
yet a sufficient indication for a purely Fermi 
character of the energy spectrum of its electron 
system. It is fully possible that there are super
conductors where the current carriers behave 

with sufficient accuracy as bosons. In the latter 
case, the dependence of the critical quantities on 
M must be appreciably weaker than in the case 
of fermions. Apart from that, the temperature 
dependence of the transport coefficients in the 
ground state of a metal with Bose current car
riers must be different from that of a metal with 
Fermi current carriers .11 These differences 
between Bose and Fermi conductors enable us 
to expect that a combined study of different prop
erties of superconductors both above and below 
the critical temperature Tcr"" M-l/2 depend
ence) should give us the possibility to solve ex
perimentally the problem of whether the energy 
spectrum of every real superconductor belongs 
to the Bose or to the Fermi type. 
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