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A method is proposed for an estimate of the effect of impurities on the parameters of transi­
tion-metal x-ray emission spectra. The method is applied to the case of dilute alpha-solid 
solutions with iron as the base. 

SYSTEMATIC investigations carried out over the 
last few years for the study of dilute solid solutions 
with transition-group metals as a base have shown 
that a considerable influence is exerted by small 
impurities (of the order of 0.01 to 0.1% atomic) on 
some of the physical properties of these solutions. 
This influence is evidenced by changes in the x-ray 
emission and absorption spectra parameters, in the 
optical constants, in the diffusion coefficients, in 
the coefficient of linear expansion, in the electrical 
resistivity, etc. 

A study of experimental data and a theoretical 
investigation of the subject have led us to a model 
of a physical mechanism describing the action of 
impurities on the electron energy spectrum for 
the transition metals and on the interatomic bind­
ing forces in theee metals.1•2 We examine in the 
present paper the possibility of applying this model 
to a quantitative estimate of the wavelength changes 
in the emitted x-ray spectra. 

The model can be described as follows. 
Upon entering a metal, an impurity of substitu­

tion (or inclusion) loses its outer (valence) elec­
trons, which are distributed in the conduction 
band of the base metal. The resultant positive 
charge on the impurity ion may be either greater 
or less than the positive charge on the remaining 
atomic cores, i.e., the impurity in the metal will 
possess an excess positive or negative charge. 
It turns out that the perturbing potential of this 
excess charge is active only with a finite radius, 
because of the shielding effect provided by the 
conduction electrons. The effective radius ofthe 
excitation potential comprises only a few coordi­
nation spheres around each impurity atom. The 
resultant polarization interaction leads to a dis­
tortion of the electron shells of the base-metal 
cores. In transition metals this effect also in­
fluences the defective (not fully built up) nd or 
nf shell. Since the corresponding energy band 
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overlaps the conduction band, an equilization of 
electron energies takes place about the Fermi 
level, i.e., in the immediate vicinity of the im­
purity, electrons pass from the defective shell 
into the conduction band (or vice versa, depend­
ing on the sign of the excess charge of the im­
purity). Thus, in the vicinity of the impurity, the 
effective charge of the base-metal core changes, 
which is equivalent to the appearance of induced 
excess charges on these cores. These excess 
charges are always opposite in sign to the charge 
of the basic impurity. Therefore, an additional 
(polar) bond arises between the basic impurity 
and the surrounding cores. Thus, distinct re­
inforcement blocks appear and remain until thE! 
impurity concentration reaches a value such that 
the impurities develop strong interactions among 
themselves. 

In Gurov's wor~ an investigation was made of 
the degree of validity of such a model and the 
limits within which it could be applied. It was 
shown that the model holds for those cases when 
an approximation of strongly bound electrons 
holds. The concepts thus developed are therefore 
applicable to all electrons of the atomiq core in­
cluding electrons of the "defective" shell, whereas 
if applied to the conduction electrons, they can 
cause considerable discrepancies. 

Gurov3 also showed that if the potential for the 
excess charge of the impurity drops off rapidly 
with distance and changes very little at distances 
on the order of the radius of the first coordination 
sphere (that is, practically constant over a range 
on the order of the dimensions of the core), then, 
the local deformation of the electron spectrum 
(isolated at each site) can be conveniently described 
by the "rigid band" approximation,' according to 
which 

1:1£ = -eW (r), (1) 
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where W is the potential of the excess impurity 
charge, e the absolute charge of the electron, and 
r the distance from the core of interest to the im­
purity. It is common practice to express W ( r}, 
after Mott, 5 in the following form (for a more pre­
cise form see reference 6} 

W (r) = - (Ze j r) e-qr (2} 

where Ze is the excess charge. 
On the basis of the concepts described above 

and Moseley's law we can make an approximate 
evaluation of the influence of the impurities on the 
x-ray spectra of the transition metals. To illus­
trate how this evaluation is carried out, we exa­
mine the line shift of the x-ray emission spectrum 
of iron in dilute a-solid solution from the posi­
tions in the spectrum of pure a-iron. 

We can consider the position of the Fermi level 
fixed for small impurity concentrations. For this 
case the change in effective charge takes place as 
a result of the "local deformation" of the 3d band 
and because of a corresponding leakage of electrons 
from the 4s band into the 3d band (or the re­
verse, as determined by the sign of the excess im­
purity charge}. Thus, the mean change of effective 
charge, !::. Ze, per atom of the system is equal to 
the total change of effective charge in one block 
multiplied by the number of blocks, Nimp• for a 
given atomic concentration of impurity, c, and 
divided by the total number of atoms in the system, 
N(c = 100 Nimp/N}. For an approximate compu­
tation, in view of the rapid falling off of potential 
of the excess impurity charge, the order of mag­
nitude of the total change in effective charge in the 
block can be determined from the change of ef­
fective charge on the atomic cores situated on the 
first coordination sphere around the impurity. 
Therefore 

j t,Ze! =I N;P ~ e {p3d (r, Ep)- pgd (r, EF)} d-e I 
layer 

=I 0.01 ce \. t,EF (up I oE)Ep d-: I 
layer 

= 10.01cNe2 W(Rk)ngd(EF) ~ 1~3d(r, £p) 1
2 d-rl 

layer 

N k exp (- qRk) 
= 0.01 ce3 j Z I Rk ngd (Ep), (3} 

where p3d and Pgd are the densities of the 3d 
electrons respectively in the dilute solid solution 
and in the pure metal, n~d ( EF) is the density 
(per atom} of the levels at the Fermi surface in 
the 3d band of the pure metal, Nk is the number 
of atomic cores on the first coordination sphere, 
and Rk is the radius of this sphere (for a-iron, 
Nk = 8, Rk = 2.4 x 10-8 em}. The integration is 

taken over a monatomic spherical layer which en­
compasses the atomic cores on the first coordi­
nation sphere; the transformations take into ac­
count the fact that in the approximation of strongly 
bound electrons 

~ l~ad(r, Ep)j 2 d-c=Nkl N; (4} 
layer 

the parameter q is connected with the effective 
radius of the blocks and may be approximated with 
the aid of the Friedel4 scheme, or else empiric­
ally7•8 from the position of the extremal points of 
the concentration curves for the diffusion coeffi­
cient or for the linear thermal expansion coeffi­
cient.9•10 The concentration corresponding to the 
extremal point determines the concentration of 
impurity at which "dense packing" of the blocks 
takes place. This determines in turn the radius 
of a block and hence the parameter q. The the­
oretical and empirical values are of the same order 
of magnitude (q ~ 0.5 to 1.0 x 108 cm-1 ). Es­
timates of the concentration that yields optimal 
action of impurities (c = 0.1% atomic}, computed 
by this formula, lead to the following magnitude 
for the change of effective charge 

(5} 

(the density of levels in the 3d band at the Fermi 
surface in a-iron is taken from the Landolt-Bern-

o 11 -1 stein tables: n3d ( EF} ~ 7 x 10 erg ) . 
We now estimate the change in the lines of the 

x-ray emission spectrum for iron. Let us take 
as the excess charge of the impurity a quantity 
on the order of unity (here and in all that follows, 
everything is expressed in units of electron charge} 
i.e., according to formula (5}, it::. Z I ~ 10-2• 

The entire computation is carried out by means 
of Moseley's law in the following manner. We 
write Moseley's law in the form 

vIR= const·(Znuc - cr) 2, 

where Znuc is the absolute nuclear charge and 
a is the shielding constant 

(6} 

(7} 

where each term indicates the contribution of a 
particular electron shell to the shielding ( Zs is 
the charge of the corresponding electron shell}. 
Evidently 

t, (v / R) = - const · 2 (Z nuc- a) t,a (8) 

or 

t,vjv = -2t,ai(Znuc-a). (9} 
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Let us estimate the value of 6. a . For the gen­
eral case we have 

(10) 

A change in the charge of any one electron shell 
causes all the Bs to change, i.e. 6. Bs = 
F(6.z1, 6.~, ... ) for any s. Moreover, it is 
evident that upon change in sign of any one 6. Zj 
the signs of all the 6-.Bs change, i.e., the F(6.zj) 
curves have inflection points at 6. Zj = 0. There­
fore, if we expand 6. Bs in powers of 6. Zj the 
series will start with the ( 6. Zj )3 term. For this 
reason we can neglect all the 6. Bs if 6. Zj << 1. 
On the other hand, the terms which have been 
dropped become the dominant ones for 6. Zj ~ 1. 

In the scheme that we have investigated, the 
charge changes only in the 3d-shell, and I 6. z3d I 
~ 10-2 « 1, so that 

(11) 

The coefficient B3d is determined by Sommer­
feld's formula11 

(12) 

where an is the radius of the electron shell, with 
respect to which the screening is under consider­
ation, and a is the atomic radius. 

Let us investigate, for example, the shift of the 
K{3 iron line (the 1s-3p transition). Here the 

1 
determining quantity (of greater magnitude) will 
be a3P' so that we must determine the radi~s of 
the 3p shell. This quantity can be found in the 
Landolt-Bernstein tables for a free iron atom (the 
radius of inner shells changes insignificantly for 
transitions in the metallic state). This radius is 
equal to a3p = 0.2 x 10-8 em (overestimated). 
For the atomic core of a-iron (metal), we find 
from the same tables a = 0.4 x 10-8 em, so that 

Bad.-::::: 10-1; I ~0' I = Bad I Llzad I= 1 o-a. (13) 

It follows from the above that the estimated re­
lative displacement of the K 131 line is (bearing 

in mind the fact that ( Zn - a) ~ 20) 

j ~V /VI = 1-2 ~0' / (Znuc- cr) I 0::::: 10-'. (14) 

Experimental data show a displacement of 6. v ~ 
0.7 ev for v = 7 x 103 ev, i.e., of the same order 
of magnitude. 
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