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The principles of a polarization theory for single- and many-domain ferroelectric crystals 
possessing one or two Curie points are developed for weak, strong, and medium fields at 
various temperatures. In contrast to the magnetization-curve theory previously developed, 
it is assumed that rotation can be neglected in the first approximation. The various refine­
ments can be introduced in a way similar to that employed in the magnetization -curve theory. 

THE theory of electrification curves for ferro­
electrics should be formulated with account of the 
results of the theory of magnetization curves of 
ferromagnets .1 Sometimes, however, one begins 
with the theory formulated by Becker in 1930, in 
which inversion processes (shifting of the domain 
boundaries) are not taken into account. Accord­
ing to this theory, if one starts with an S -shaped 
curve (Fig. 1), the Barkhausen jump should not 
occur anywhere except at points C or C'. In this 
case the coercive force E0 is determined by the 
segment DC'. In 1931- 19331 we showed that this 
theory is inadequate in principle and in practice. 
Actually (as indicated, for example in reference 1) 
the Barkhausen jump can occur at any point o or 
in the segment RC (or R'C' ), which indeed de­
termines the value of Ec. This is due to the ex­
istence of inversion (displacement of the domain 
boundaries ) , in addition to rotation processes 
and the paraprocess. 

If these concepts are carried over to the theory 
of ferroelectric electrification curves it becomes 
necessary to develop a new theory of coercive 
force and its temperature dependence, differing 
in principle from the single-domain theory (in 
spite of the attractiveness of this theory because 
of its great simplicity). 2 In solving this problem, 
we are able at the same time to formulate a theory 
of susceptibility in weak and strong fields. Owing 
to the existence of the rotation and inversion proc­
esses, and of the paraprocess we have accordingly 
for the susceptibility K = Kr + Ki + Kp, with Kr 
small for Rochelle salt. To calculate Ki and Kp 
at various values of T, we start with the relation 
we have derived for the temperature dependence 
of the electrification curve3 

where P and E are the polarization and the 
electric field, ®i are the Curie points, a and 

lp 

c' 

FIG. 1 

B are parameters, and v and 11. are integers. 
In the case of a single Curie point, Jl = 0. 

This formula can be obtained most simply in 
the following manner: 3 we expand the work of 
electrification into a series (even) in powers 
of P 

p 

~ EdP = + AP2 + + BP4 + i- cpa + .. . (2) 
0 

The quantity A is expanded in powers of the 
differences T- ®1 and ®2 - T 

(2') 

But A = 0 at the Curie points for here ( P ) E=o = 0. 
Equation (1) follows from (2) and (2'). 

In addition, we should know the dependence of 
the domain energy U on the positions of the 
boundaries between domains. Let x be the dis­
placement of the boundary from the equilibrium 
position. Then, expanding in powers of x and P, 
we have 

(3) 

where c0 is the sum of two terms, one linear and 
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the other quadratic in u, the internal elastic 
stress. A formula of this type is applicable to 
various types of domain energy ( electrostriction, 
spontaneous electrification, and energy of the do­
main boundaries ) . Consequently, we obtain an 
analogous formula for the total energy, too. In the 
general case we should also take into account the 
types of energy which are proportional to other 
powers of P. In the first approximation it is 
enough, however, to restrict oneself to Eq. (3). 

Taking into account the energy of the external 
field (Ua = -2PEx), we obtain for the equilibrium 
condition, a (Ui + Ua)/ox = 0, the following equa­
tion 

E = x (c0P + c1cr). 

Let n be the number of plane domains per 
cubic centimeter. We then obtain for the initial 
electric susceptibility 

xi= 2 nxP I E. 

From (4) and (5) we get 

x = 2 nc~, c~ = P / (c0P + clcr), 

(4) 

(5) 

(6) 

i.e., the susceptibility of inversion at u- 0 is in­
dependent of the temperature. The situation is dif­
ferent with the susceptibility of the paraprocess. 
We consider first fields considerably weaker than 
the coercive force. We then obtain for the point 
E = 0 

"-p = dP I dE= 1 I 2 A. (7) 

Thus we have from (2), (6), and (7), for the total 
susceptibility in weak fields at v = J.t = 1, 

x = "-o + 1 I 2a (T- 8 1) (82 - T), (8) 

where 

"-o =Xi+ x,. 

According to (1), we have for the case of strong 
fields at v = J.t (for ®1 < T < ®2 and c = 0) 

where K' is the susceptibility in the absence of 
rotation and inversion. 

At the Curie points themselves, P depends 

FIG. 2 

(9) 

!JO 

FIG. 3. Solid line- theoretical data; dotted-experimental 
data. 

strongly on E. Indeed, we get from (1) and (2) 

P = (E J 8)'1'. (10) 

Supplementing (9), we readily find by the method of 
successive approximation the value of P for tern­
peratures near ®1 and ®2. As a result we obtain 
a curve of type III (Fig. 2). 

The types of susceptibility curves obtained in 
weak fields (I) and in strong ones (II) are also 
shown in Fig. 2. The experiment yields a family 
of curves of this type. 

Let xc be the critical boundary displacement 
corresponding to the Barkhausen jump. We then 
obtain for the coercive force, from (4), 

(11) 

i.e., according to (2) and (1), we have (for v = J.t) 

Ec = 2 Est V ~T - ~)]) (82 -- T) / (82- 81), (12) 

where Est pertains to the point T = (®1 +®2 )/2. 
As can be seen from Fig. 3, Eq. (4) is in good 
agreement with the experimental data of Bradford3 

(reference 4, p. 576). We assume that the discrep­
ancy between the experimental data of various au­
thors is due to insufficient stabilization of the 
temperature, and also to the presence of dielectric 
viscosity. 
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