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WHEN the probability of fission depends on nu­
clear angular momentum, 1 in order to determine 
the dependence of the anisotropy on x = ( z2 I A)/ 
(Z2/A)cr• where z and A are the charge and 
mass of the fissioning nucleus, we must take other 
competing processes into account (specifically 
here, neutron evaporation). The fission probabil­
ity of a nucleus with angular momentum j and its 
projection K on the symmetry axis of the nucleus, 
for the direction dw = sinJ. dJ., where ..9- is the 
angle between the incident beam direction and the 
direction in which a fragment come off, is given by 

where r n is the neutron width and r f is the fis­
sion width for the given angular momentum. When 
jcr » j » 1 (where jcr is the angular momentum 
for which the nucleus is not stable against fission1 ) 

for 'Yf we can use a statistical formula such as2 
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where r f ( 0) is the fission width for zero angular 
momentum, T = .J lOU/ A is the temperature, U 
is the nuclear excitation energy, I0 is the moment 
of inertia of a spherical nucleus, IA is the moment 
of inertia about an axis perpendicular to the sym­
metry axis and Ic is the moment of inertia about 
the symmetry axis of the nucleus. IA and Ic are 
taken for a deformation corresponding to the top 
of the fission barrier. For a moment of inertia 
equal to that of a rigid body we have 
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where z = 1 - x. Inserting (2) into (1), summing 
over all K and averaging over j, we obtain the 
angular distribution 
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10 is a Bessel function with imaginary argument; 
m, E, B, R are the mass, energy, Coulomb 
barrier and radius of the incident particle; R1 is 
the radius of the target nucleus; u is the cross 
section for the formation of a compound nucleus. 

Equation (3) gives the angular distribution for 
one stage of the cascade process of neutron evap­
oration. For rf » rn fission occurs without neu­
tron evaporation and Wf ( 0 )/wf ( 1r/2) determines 
the anisotropy. In this case (3) agrees with Strutin­
ski'r 's formula. 2 For r f « r n the entire neutron 
evaporation cascade must be taken into account. 
Therefore the anisotropy is given by 

crr(O)fcrr(rt/2)= .§ w1,.(0) ;· .§ w1;(rt/2), 
l-O z-o 

wr;= irxidjcp,.(j) Dorn.j(rn.+r1s(j)), 

where i is the number of the cascade stage. In 
Wfi exp ( j2,82) remains in the numerator; this rep­
resents the increased weight of states with high 
angular momentum and, consequently, increased 
anisotropy. The essential point is that when rf » 
r n fission is equally probably for different values 
of the angular momentum, while when r f « r n 
mainly nuclei with high angular momentum will 
fission. 

If it is assumed that the dependence of the nu­
clear moment of inertia about the symmetry axts 
( Ic) on z is determined just as for a rigid body, 
where ~ < 1, then for nuclei with rf » rn we 
can obtain ~; then assuming that ~ is identical 
for all nuclei and is independent of temperature, 
we obtain the anisotropy for nuclei with r f « r n. 
Using experimental data3 on fission induced by a 
particles, we obtain ~ = 0.46 for Pu239, Np237, 
and U235 . If for Ra226 r f « r n the anisotropy is 
1.87 (compared with the experimental value 2.03 
± 0.05). 
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We note that the theory can be tested for both 
rf » rn and rf « rn by studying CTf(J.) CTf(7T/2). 
For J. ~ 0 this ratio approaches a constant limit 
as a 2jfuax increases. Thus CTf(7T/4)/CTf(7T/2)­
.f2 as a 2jfu.ax- oo and is independent of the nu­
clear parameters. 

In conclusion I wish to thank D. P. Grechukhin 
for a discussion and I. Halpern for his kindness in 
making experimental data available. 
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Note added in proof (January 27, 1959). 
a(0°)/a(90°) was also calculated for Ra, assum­
ing ~ = 1 but with a more exact value of the angu- · 
lar momentum of the compound nucleus (See I. 
Halpern and V. M. Strutinskil, Report P/1315 at 
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IN the paper by Esel'son, Kaganov, and Lifshitz1 

it is shown that the lambda transition in a solution 
of helium isotopes is a phase transition of the sec­
ond order. Using the condition for equilibrium 
between phases and the equations for the chemical 
potentials of the components in the gaseous phase, 
the authors obtain the equation 

kT In Pa +X (T) ~~ 1' + (1 - Xiiq) ar I axliq, 

kT In p 4 + X (T) = cp- x.llq acp I ax liq (2) 

(the equation numbers are those of reference 1 ) . 
If we take the total derivative of both sides of 
Eq. (2), we get, according to the authors, the ex­
pression 

( d ) a'~' a•p 
-·Sa+kT dT InPa =ar +(1-xuq)axuqar (3) 

and so on. It is further asserted that at the tern-
perature TA. one obtains 

the Second Geneva Conference on the Peaceful 
Uses of Atomic Energy, 1958). It was assumed 
that T = ..J a ( U- Ef) , where Ef is the fission 
threshold and the constant a was determined 
from the anisotropy for Pu. The initial tempera­
ture of the nucleus Pu + a particle at the saddle 
point is 1.3 to 1.5 MeV. The anisotropy for Ra is 
calculated to be 2.0. For Bi, taking into account 
the dependence of fissionability on excitation en­
ergy, we obtain a(0°)/a(90°) = 1.9(a(0°)/ 
a(90°)exp = 2.02; rl0>/rn"' exp [(En -Ef)/T], 
where Ef- En >:::l 8 Mev and Ef >:::l 15 Mev. Agree­
ment of the calculated and experimental anisotropy 
for Ra shows that we have no reason to assume 
the absence of correspondence between the nuclear 
moment of inertia and that of a rigid body, includ­
ing the cases of excitations below 10 or 12 Mev, as 
was suggested by Halpern and Strutinskil on the 
basis of neutron experiments. 

The results given here were obtained in collab­
oration with V. M. Strutinskil. 

Translated by I. Emin 
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(4) 

and so on, since the ·first derivative with respect 
to the thermodynamic potential has a break and 
the second derivative a jump at a phase transition 
of the second order. Substituting, according to 
Eqs. (6) and (9), for the quantities which occur here 
the authors obtain the following equation for the 
total pressure 

( 
d ) t.cp ar).. 

kT At:. dT In p = (Xvap- Xliq) r;:- axlicj . (10) 

Since, as is shown in reference 1, 8TA./8Xliq < 
0, ~Cp > 0, Xvap > Xliq• we have ~ { d ln p/dT} 
< 0 which is in accordance with experimental data. 2 

The authors conclude from this that the lambda 
transition is a phase transition of the second order. 

We must draw attention to an error which has 
crept in in the process of this proof. If we take 
into account that along the equilibrium curve the 
total derivative with respect to the temperature 
is given by the expression dt-t/dT = Bt-t/BT + 
(8t-t/8P)dP/dT one must write the basic equa­
tions (3) and (4) in the form 
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