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u238, and Cf252 ) • Secondly, the gamma quanta en­
ergies depends little on the excitation energy of 
the compound nucleus prior to fission. 

The authors express their gratitude to Yu. I. 
Belyanin for insuring operation of the accelerated 
tube in the performance of this experiment. 
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KHALATNIKOV1 has shown that for a relativistic 
shock wave of low intensity the theorem of Zemplen 
and the conditions of mechanical stability, v 1 > cit 
v2 < c2, are applicable provided only that the fol­
lowing inequality holds; 

( 82 (w 1 n) )\ . O 
ap" s / (1) 

(where w is the heat function per particle, s the 
entropy per particle, n the density of particles 
measured in the rest system of the particles, and 
p the pressure.) 

These results are also applicable for relativistic 
shock waves of any intensity. The proof can be done 
in a similar way to Landau and Lifshitz, (reference 
2, paragraph 84,) for the case when the shock adia­
bate lies in the plane (p, w/n.) In this case, for­
mula (84,6) will correspond to 

w2T2ds2 = 1/2 (w1 I n1 - w2 I n2 ) 2 d (j2), 

and the expression 

is replaced by 

j = nu, u = v / V 1 - v2 , a= c / V 1 c2, 

(where c is the velocity of sound, and the velocity 
of light is taken as unity.) It follows from this that 
the quantity n/w, as well as the pressure and the 
density, are increased on the shock wave. 

The inequality (1), for the nonrelativistic case, 
reduces to the well known conditions, (Cl2(1/n)Clp2)s 
> 0. For a relativistic ideal gas we have 

( a2 (w 1 n)) __ 2 (2- y) 1 
-~ s- y(y-1) pn2 • 

The last expression is always positive, since the 
quantity y is within the interval3 1 < y :::; %. 

It should be noted that for an ultra-relativistic 
ideal gas, 2 y =%. 

The author wishes to thank A. I. Akhiezer and 
G. Ya. Lyubarski for valuable discussions. 
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WE investigate the propagation of a uniform 
plane electromagnetic wave in a medium with non­
linear dependence of the induction B on the mag­
netic field H.* We assume to begin with that the 
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medium is isotropic, i.e., that a relation exists be­
tween the magnitudes of the fields ( B = B (H); 
Jl (H) = BB/ Em). It is easy to show that Maxwell's 
equations for this case have solutions given by the 
relations 

Hy = f(z+ctiVEp.(Hu)), 

Hy 

V8 Ex = + ~ V11. (H) dH , 

where f ( ~ ) is an arbitrary smooth function and 
E the dielectric constant. 

(1) 

The solutions (1) describe simple waves in a 
nonlinear medium (waves of this type in gas dy­
namics are described, e.g., in references 1 and 2). 
The deformation of a simple wave can be most 
easily investigated by looking at the propagation 
of a single pulse. It can be easily seen that if 
Jl (H) is a monotonically decreasing function then 
in the course of time the leading edge will become 
steeper and the trailing edge more sloping. t Be­
ginning from a particular moment t* there will 
appear in the function Hy ( t*, z) an infinite deriv­
ative. This points to the appearance of an electro­
magnetic shock wave. 

The boundary conditions which connect the fields 
on both sides of the discontinuity with its velocity 
of propagation, v, can be obtained by integrating 
Maxwell's equations over an infinitesimal interval 
~z, containing the discontinuity. Thus we obtain 

{Hy}=~E{Ex}, {Ex}=~{By}, 
c c 

(2) 

where the brackets { } denote the jump in the 
values of the respective quantities across the dis­
continuity. 

Immediately after the appearance the shock 
wave is weak ( { Jl } « Jl) and the structure of the 
field is in this approximation the same as in a 
simple wave. Equation (2) together with (1) thus 
allow the description of the development of simple 
waves and of weak shock waves. 

To investigate the structure of the shock front 
one needs further information on t'tle character­
istics of the medium. We shall investigate here 
the simplest example, of plane uniform waves in 
a ferrite saturated by a de field parallel to the 
direction of propagation of the wave by means of 
a uniform field H0• The connection between the 
magnetization M (B = H + 47TM; M = const) and 
the field H ( z, t) in this case is given by the fol­
lowing equation3:j: 

where y is the gyromagnetic ratio for the electron 
spin and 1/A. =To is the relaxation time. 

In particular, it follows from (3) that for suffi­
ciently slow processes (with a characteristic time 
T » To) M II H + H0• The connection between 
H1 = Hy and M1 =My is then given by 

Hy=My(HollfM2 -M!-4rr). (4) 

By means of (4) it is easy to find the functions 
By (Hy) and Jl = 1 + 47TdMy /dHy = Jl ( Hy) which 
enter Eqs. (1) and (2), for the case of simple and 
shock waves. 

It turns out that it is not possible to obtain a 
general solution of Maxwell's equations taking into 
account the relation (3). We therefore limit our­
selves to the case of a stationary plane shock 
wave.** The equations can in that case be easily 
integrated. It turns out4 that in a stationary wave 
the vector M rotates around the direction of prop­
agation of the wave, z (precession angle, cp ), 
while the angle between M and the z -axis, 0, 
changes according to 

1 n . (cos e - cos e ')2 

(1 +COS 8)!-COS O' (1- COS !J)H-c:os U' 

( z \ 21, (H' _)__ 4 M . a') . a' 
= 0 ·- t) M u , rr sm v sm v , (5) 

The precession frequency w = Bcp/Bt is given by 

<•> = 1 {H~ cos 8 I sin 8'- (H 0 - 4r.M cos 8)}, (6) 

Here 0' and Hy are the values of the respec­
tive magnitudes for z - - oo (far behind the wave 
front); the wave velocity v depends on the ampli­
tude of the transverse part of the magnetic field*** 

v2 I c2 = Hul (Hy + 41tM sin 8) 

=~ H~ I (H~ + 41tM sin 8') = canst, (7) 

while the angle 0' is connected with the field am­
plitude of the shock wave Hy by the equation 
Hy cot 0' = H0 - 47TM cos 0'. 

It follows from (5) that the time width of the 
wave front, T, is given by 

1: = M / 2}. (H:v + 4ITM sin 8') sin 8' (8) 

and it depends on the relaxation time of the ferrite, 
To= 1/A. and on the amplitude H}r. In a very strong 
wave ( Hy » H0, M) obtains 

V Z C, 1: Z "'CoM j2H~, Wmax Z 1H~, (9) 

In a weak shock wave ( Hy « H0 ~ 47TM) the pas­
sage time of the front is considerably longer and 
the maximum frequency component is less. 

Wmax= 1hiHo[H~j(Ho-41tM)]2, "'CWmaxZ 1(4IM"to. (10) 
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Thus for sufficiently large TWmax the wave front 
of an electromagnetic shock wave consists of a 
circularly polarized oscillation with a variable 
frequency. 

*The case of a nonlinear relation between the electric dis­
placement D and field E can be treated similarly, as well as 
the case of nonlinearity with respect to both the electric and 
the magnetic fields. 

tThis circumstance (for electromagnetic waves) was first 
pointed out and utilized by I. G. Kataev. 

*The anisotropy field will not be considered. In the follow­
ing it will be assumed that Hzo = Ho - 4rr M > 0 since only 
this leads to stability in the initial conditions in the medium. 

**In a stationary wave the field components (which, in 
general, are not transverse) have the form f(z-vt) where the 
velocity v = const. 

***We note that the value for the velocity of the shock 
wave determined from (2) and (4) coincides with that from (7). 

1 L. Landau and E. M. Lifshitz, MexaiD!Ka crrJIOlllHhiX 
cpeA (Mechanics of Continuous Media) Moscow, 
Gostekhizdat, 1954. 

2 R. Courant and K. 0. Friedrichs, Supersonic 
Flow and Shock Waves, Interscience, New York, 
1948, (Russ. transl. IlL, Moscow, 1950). 

3 L. Landau and E. Lifshitz, Phys. Z. d. Sowjet­
union 8, 153 (1935). 

4 A. V. Gaponov and G. J. Freidman, .vba. BY3, 
PaAKO¢K3KKa (News of the Universities, Radio­
physics), in press. 

Translated by M. Danos 
188 

ON THE HEAT CONDUCTIVITY AND 
ATTENUATION OF SOUND IN SUPER­
CONDUCTORS 

B. T. GEILIKMAN and V. Z. KRESIN 

Moscow State Pedagogical Institute 

Submitted to JETP editor December 18, 1958 

J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 959-960 
(March, 1959) 

WE have previously calculated the electronic 
heat conductivity1 Ke, of superconductors and the 
phonon conductivity, 2 Kp, determined by the scat­
tering of phonons by electrons. It will be shown 
here that from the theoretical temperature depend­
ence of Ke and Kp found, we can explain, to a 
considerable extent, all the relationships in the 
existing experimental data on the heat conductivity 
of superconductors. 

According to our earlier paper2 Kp can be ex­
pressed as:* 

x~ = x;F (T)/ F (T ~<), 

F (T) = - 8 (b4 + b3) (eb -1 r1 
+ 6q3) (eb + 1)- 3 (eb + 1) L;s-3 exp (-2bs) 

x (4b2s2 + 4bs + 2) + 6C (4) (eb -1) 

- (eb- 1) l} s-4 exp ( -2bs) (8b3s3 

+ 12b2s2 + 12bs + 6) -1- 32b3 (e2b- lf1 

- a4l}{s exp (-2bs) Ei (-s (2b-a)]} + 6 L; s-3 exp (-2bs), 

a=2b-0,16, qs)=l} n-•. (1) 
n=l 

In the normal state KB = const • T2; b = .6. (T) /kT, 
where .6-(T) is the energy gap, and Ks/Kn de­
pends only on T and T/Tk. For comparison with 
experiment one must use a specimen with sufficient 
impurity concentration for Ke to be small. In 
Fig. 1 the theoretical curve is drawn according to 
Eq. (1) and the experimental points are for an 
In-Tl alloy measured by Sladek.3 

If ( Tk- T }/Tk is not very small, Ke is not 
appreciably affected by the electron-phonon inter­
action. 
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FIG. 1. Points - experi­

mental data 3 for T1 concen- /J 
tration 38%. Solid curve -
theoretical 10 

As can be seen from Fig. 1, the conductivity Kp 
increases exponentially as T- 0, owing to the in­
crease in phonon mean free path with decreasing 
scattering by electrons. At sufficiently low tern­
peratures the lattice thermal resistance due to 
electron scattering, 1/ Kpe. becomes less than 
the resistance due to scattering by lattice defects 
and crystal boundaries, 1/Kpd (Kpd is the same 
as Kpd in a normal metal). Since the resulting 
lattice conductivity is Kp = KpeKpd I ( Kpe + Kpd), 
we get Kp ~ Kpd at still lower temperatures. 
Kpd usually decreases according to a power law4 

(,..., T3 ) at low temperatures. For temperatures 


