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As is well known, the spin operator is defined by 
an antisymmetric tensor of the third rank, i.e., it 
is a pseudovector: aJ.t = ( 0', ip1). In previous papers 
it has been shown1•2 (cf. also Sections 17-20 in ref
erence 3) that the longitudinal polarization of free 
Dirac particles can be characterized by the opera
tor (O'•k)/k. This operator is an integral of the 
motion with eigep.value s. We shall try to relate 
to the quantity s not only the longitudinal polari
zation, but also the transverse and time components 
of the spin vector. 

The wave function for positive energy and with 
inclusion of the spin states has the form (cf. refer
ences 1-3) 

Here 

1 
sf (K) cos Bs l 

bs = ~ sf (K) sin Os ei9 

¥2 f (- K)cos 0, 

f (- K) sin Bsei9 

f (K) =VI + k0/K, Bs = BJ2- ("'/4) (1 -- s), 

K=Vk2 +k5, ~1=kjK. 

(1) 

(2) 

The amplitude Cs describes the state with longi
tuginal spin component s = ± 1, and () and cp are 

the spherical angles of the vector k. 
The transverse and time components are not in

tegrals of the motion, and therefore they can be 
characterized only by the average values 

CIJ. = K ~ Vcr!J. ~d3x, (3) 

where the factor K = k0 ( 1 - /J~) - 112 is introduced 
in order to preserve for the average values i;J.t 
the same relativistic covariance as possessed by 
the expression lfl+aJ.tlfl· 

Let us introduce an auxiliary coordinate system 
in which the z axis is directed along the momen
tum k. Then, using the fact that for this system 
() = cp = 0, we find 

c3 = K (Ct C1- c±1c-1> = Ks 

(longitudinal component); for C1 »= 0 and C _1 »= 0 
the quantity I s I will be smaller than unity: 

C1 = ko(Ctc_1 +C:!::1Cd = k0 V1-s2 coso, 

C2 = iko (C:_1 C1 - ct C_I) = k0 V 1 - s" sino 

(transverse components); o is the phase differ
ence between the complex amplitudes C1 and C_1 . 
Finally, ?;4 = ik ( ctc1- C:J.:1 C-1) = iks is the time 
component.* 

For an unpolarized beam of electrons s = 0 
and the phase o is a rapidly changing quantity, 
so that on the average cos o and sin o go to 
zero. 

Partial polarization is also possible: for ex
ample, 0 < Is I < 1, and the angle o is again a 
rapidly changing quantity. For complete polari
zation the quantities s and o are fixed constants. 
In this case one can make one of the transverse 
components zero by a rotation around the axis k 
and then we shall have ?;3 = Ks, ?;1 = ko ( 1- s 2 )172, 

t2 = 0, and ?;4 = iks, i.e., the quantity s will de
termine all the components of the spin vector. 

Let us assume that in some coordinate system 
the momentum vector kJ.I- (k, iK) is parallel to the 
spin vector, s = 1, i;J.t (Kk/k, ik), i.e., the two 
vectors make the same angle ek = es = () with the 
z axis. Then in a new coordinate system moving 
relative to the first with the velocity c{3 directed 
along the z axis these angles are already differ
ent:t 

coso~ =(~1 cos e- ~)JV (1- f-1~ 1 cos 0)2- (1 - ~2 ) (1- f:ii), 

cos 0~ 

owing to which the quantity s' is smaller and is 
given by 
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s' = (~1 - ~cos 8)/ V ( 1 - ~~1 cos&) 2 - ( 1 -- ~2) ( 1 -~i) < 1. 

Here c{31 = ck/K is the speed of the motion of the 
particle in the original coordinate system. 

As is well known, in the decay of a stationary 
1r meson into a J-t meson and a neutrino the spin 
of the J-t meson must be directed exactly along the 
momentum of the J-t meson ( s = 1 ) . But in the 
laboratory system, relative to which the 1r meson 
may be in motion, we have s' < 1, and therefore 
there must be a transverse component of the spin 
of the J-t meson, lying in the plane of the momenta 
of the 1r and J-t mesons. 

We note that for particles with zero rest mass 
( k0 = 0) the speed is always given by {31 = 1. In 
this case e~ = 8fc, and therefore the quantity s' 
is unchanged ( s' = s = 1). This fact was used by 
one of us, following the ideas of Lee and Yang, in 
constructing a theory of the neutrino with oriented 
spin,6•7 in which neutrino and antineutrino are char
acterized by different values of s ( s = 1 and s = 
-1). 

*Analogous expressions for the average value of the spin 
vector with only positive energies taken into account can be 
obtained from the work of Tolhoek, 4 and also from that of 
Alikhanov et al. 5 But the expression for a ~ introduced in 
reference 5 (see note on page 789), 

a A= (Kp3a + p2 [kiX aJ)/k0 = a+ i P2k/k0 , 

will satisfy neither the law of conservation of total angular 
momentum nor the law of conservation of the longitudinal com
ponent of the spin. For K > 0 the results agree, since the 
average value of p2 is zero. 

tThis is due to the fact that the momentum four-vector is 
timelike: kl'-kl'- = - k~, and the spin is spacelike: t;;!L t;;!L = ~. 
with the two vectors orthogonal to each other: t;;l'-kl'- = 0. 
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THE free precession of magnetic moments of 
atomic nuclei in an external magnetic field H0 is 
usually observed by measuring the voltage and the 
frequency w0 = yH0 at the terminals of a receiv
ing coil which contains a sample initially magne
tized perpendicularly to H0• In a sufficiently 
homogeneous field H0 the phenomenon is observed 
as long as the signal which decays with the time 
constant T11 exceeds the noise in the system. 

After the signal has decayed the voltage at the 
terminals of the receiver coil is of a fluctuating 
nature and is determined on the one hand by the 
thermal noise in the receiver circuit, and on the 
other hand by the fluctuations in the magnetization 
of the sample. 

The spectral density of the mean square of the 
voltage across the load resistor R0 of the receiver 
circuit due to thermal noise in the receiver system 
is given by Nyquist''s formula, which in the case 
under consideration is of the form: 1 

( 2) 1iro h1iro RRo2 

Vr .,= 2,. cot lkT/Z(ro)j"' (1) 

where Z ( w) is the impedance, while R is the 
effective resistance of the whole receiver circuit. 
The presence in the receiver coil of a sample con
taining atomic nuclei with a magnetic moment dif
ferent from zero and situated in an external field 
H0, leads to the appearance of an additional voltage 
due to the fluctuations of the component of the mag
netization of the sample in the direction perpendic
ular to H0• The spectral density of the mean square 
of the component of the magnetization in this direc
tion is given by the expression 

(M2)., = (lix.'[2r.) coth (liwj2kT), (2) 

where 

1 ( roT_]_ roT_]_ ) 
X." = 2 X.o 1 + (yH0+ ro) 2T3_ + 1 + (yH0-ro)2T3_ ·. 

(3) 

is the imaginary part of the complex nucleus sus
ceptibility, while T 1 is the transverse relaxation 
time. 

The spectral density of the mean square of the 


