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FRILLEY et al. 1 have shown that the relative in
tensities of the a -groups of Th227 , which arise 
during its decay from the ground state to the single
particle levels of Ra223 (0.59, 286 kev), are ap
proximately the same and amount to 17 - 21%. Such 
levels must therefore be considered as the ground 
states for the three rotational series, one of which 
was considered by the author elsewhere. 2 

In this communication we establish the spin of 
the lower level of Ra223 with the aid of the Ter
Martirosyan formula3 for the probability of the a 
decay of a parent nucleus of spin I0• 

I+l' 

w~· = c ~ I C~/~im/ 2 (2l +I) exp {- ocEr- ~l (l + 1)}. (1) 
l=l-1' 

In our calculations the projection m of the or
bital moment of the a particle l on the symme
try axis of the nucleus is assumed to differ from 
zero. Here m = I0 - I', where I' is an analogous 
projection of the spin I of the corresponding level 
of the daughter nucleus. The semi-empiral coeffi
cients a and {3 are taken from reference 2 and 
the values of the excitation energy Er are taken 
from the level scheme given in reference 1. It was 
also established in reference 1 that 59- 29- 0 kev 
level transitions are electric quadrupole, and con
sequently the following assumptions can be made 
concerning the spin of the lowest level: (a) I = I' 
= I0 - 2; (b) I= I' = I0 -1; (c) I = I' = I0• The 29-
kev level, in view of the relatively low intensity of 
the a particles, ( 5%) should logically be con
sidered ,the first rotational sublevel of the lower 
level. In the case (c) we could not obtain an em
pirical relation for the intensities of the a groups 
for the 29 and 0 kev levels, leaving therefm1e only 
cases (a) and (b). Upon calculating the Clebsch
Gordan coefficients that enter into (1), and con
sidering that by the parity rule l can be only 
even, we obtain for case (a) the following ratios 
for the intensities of the groups for the 29 and 0 
kev levels 

-!i:_o= _ 2 _ e-14.2·0.029 
J0 fo+ 1 

(2) 

{Here l = 2 and m = 2, and the terms with l > 2 

in the sum of Eq. {1) can be neglected). Relation 
{2) assumes the empirically-established value of 
5%: 19%, either when the spin of the ground state 
of the daughter nucleus { Th227 ) is I0 = ~2 , or when 
I0 = %. We therefore conclude that the spin of the 
lower level of Ra223 is either % or %. Calcula
tions made for case (b) lead to I0 = %, which, 
however, from considerations given in reference 2, 
is excluded. 

The same method of calculations can also be 
applied to the calculation of the spin of the 286-kev 
ground state of the third rotational series. The 
307-kev level must, for the same reason, be taken 
as the first sublevel of this series. Since a mag
netic dipole 286 - 0 kev transition and an electric 
dipole 286 - 238 kev transition were empirically 
established in reference 1, the only assumption 
that can be made is I = I' = I0 -1, for the 286-kev 
level and I = I0 and I' = I0 -1 for the first sub
level { 307 kev). In both cases we have l = 2 and 
m = 1. The calculated ratio of the intensities of 
the a groups for the 307 and 286 kev levels is 

Jzo7 3 (2lo- 1) e-14.2·0.02 
Jzss = l:l (/o- 1)(2/o + 3) {3) 

and when I0 -;, ~2 and % it is close to the empiri
cal ratio, 1%: 17%. The best agreement occurs in 
this case for the second value, corresponding to a 
spin of % for the lower level. The calculated ratio 
of the intensities for the a groups of the 59-kev 
and 0 levels is ~ 1.3; the empirical value is 0.9. 

Sliv and Peker4 computed the effect of the non
sphericity of the nucleus on the transparency co
efficient of the nuclear barrier for an a particle 
with velocity {3 = v/c. This effect is introdu9ed 
into the probability of the a decay by the factor 

P = exp{- 1 ~;~ f V x(.l- x) c}, (4) 

where x = Ep/V0, with Ep being the decay energy 
and V0 the maximum height of the potential barrier; 
t is the relative deformation of the nucleus. The 
calculated ratio of the foregoing intensities agrees 
with the empirical values at a difference of 0.1 in 
the relative deformations {elongations) at the 
59-kev and 0 level. For the 238-kev and 0 levels, 
the difference becomes 0.15. Both values are fully 
acceptible and readily explain the empirically es
tablished fact that the rotation constants B for 
the first and third rotational series ( 4.5 and 4 kev) 
coincide approximately with the rotation constant 
( 5 kev) of the second rotational band, considered 
in reference 2. 
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As is well known, the spin operator is defined by 
an antisymmetric tensor of the third rank, i.e., it 
is a pseudovector: aJ.t = ( 0', ip1). In previous papers 
it has been shown1•2 (cf. also Sections 17-20 in ref
erence 3) that the longitudinal polarization of free 
Dirac particles can be characterized by the opera
tor (O'•k)/k. This operator is an integral of the 
motion with eigep.value s. We shall try to relate 
to the quantity s not only the longitudinal polari
zation, but also the transverse and time components 
of the spin vector. 

The wave function for positive energy and with 
inclusion of the spin states has the form (cf. refer
ences 1-3) 

Here 

1 
sf (K) cos Bs l 

bs = ~ sf (K) sin Os ei9 

¥2 f (- K)cos 0, 

f (- K) sin Bsei9 

f (K) =VI + k0/K, Bs = BJ2- ("'/4) (1 -- s), 

K=Vk2 +k5, ~1=kjK. 

(1) 

(2) 

The amplitude Cs describes the state with longi
tuginal spin component s = ± 1, and () and cp are 

the spherical angles of the vector k. 
The transverse and time components are not in

tegrals of the motion, and therefore they can be 
characterized only by the average values 

CIJ. = K ~ Vcr!J. ~d3x, (3) 

where the factor K = k0 ( 1 - /J~) - 112 is introduced 
in order to preserve for the average values i;J.t 
the same relativistic covariance as possessed by 
the expression lfl+aJ.tlfl· 

Let us introduce an auxiliary coordinate system 
in which the z axis is directed along the momen
tum k. Then, using the fact that for this system 
() = cp = 0, we find 

c3 = K (Ct C1- c±1c-1> = Ks 

(longitudinal component); for C1 »= 0 and C _1 »= 0 
the quantity I s I will be smaller than unity: 

C1 = ko(Ctc_1 +C:!::1Cd = k0 V1-s2 coso, 

C2 = iko (C:_1 C1 - ct C_I) = k0 V 1 - s" sino 

(transverse components); o is the phase differ
ence between the complex amplitudes C1 and C_1 . 
Finally, ?;4 = ik ( ctc1- C:J.:1 C-1) = iks is the time 
component.* 

For an unpolarized beam of electrons s = 0 
and the phase o is a rapidly changing quantity, 
so that on the average cos o and sin o go to 
zero. 

Partial polarization is also possible: for ex
ample, 0 < Is I < 1, and the angle o is again a 
rapidly changing quantity. For complete polari
zation the quantities s and o are fixed constants. 
In this case one can make one of the transverse 
components zero by a rotation around the axis k 
and then we shall have ?;3 = Ks, ?;1 = ko ( 1- s 2 )172, 

t2 = 0, and ?;4 = iks, i.e., the quantity s will de
termine all the components of the spin vector. 

Let us assume that in some coordinate system 
the momentum vector kJ.I- (k, iK) is parallel to the 
spin vector, s = 1, i;J.t (Kk/k, ik), i.e., the two 
vectors make the same angle ek = es = () with the 
z axis. Then in a new coordinate system moving 
relative to the first with the velocity c{3 directed 
along the z axis these angles are already differ
ent:t 

coso~ =(~1 cos e- ~)JV (1- f-1~ 1 cos 0)2- (1 - ~2 ) (1- f:ii), 

cos 0~ 

owing to which the quantity s' is smaller and is 
given by 


