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FRILLEY et al. 1 have shown that the relative in­
tensities of the a -groups of Th227 , which arise 
during its decay from the ground state to the single­
particle levels of Ra223 (0.59, 286 kev), are ap­
proximately the same and amount to 17 - 21%. Such 
levels must therefore be considered as the ground 
states for the three rotational series, one of which 
was considered by the author elsewhere. 2 

In this communication we establish the spin of 
the lower level of Ra223 with the aid of the Ter­
Martirosyan formula3 for the probability of the a 
decay of a parent nucleus of spin I0• 

I+l' 

w~· = c ~ I C~/~im/ 2 (2l +I) exp {- ocEr- ~l (l + 1)}. (1) 
l=l-1' 

In our calculations the projection m of the or­
bital moment of the a particle l on the symme­
try axis of the nucleus is assumed to differ from 
zero. Here m = I0 - I', where I' is an analogous 
projection of the spin I of the corresponding level 
of the daughter nucleus. The semi-empiral coeffi­
cients a and {3 are taken from reference 2 and 
the values of the excitation energy Er are taken 
from the level scheme given in reference 1. It was 
also established in reference 1 that 59- 29- 0 kev 
level transitions are electric quadrupole, and con­
sequently the following assumptions can be made 
concerning the spin of the lowest level: (a) I = I' 
= I0 - 2; (b) I= I' = I0 -1; (c) I = I' = I0• The 29-
kev level, in view of the relatively low intensity of 
the a particles, ( 5%) should logically be con­
sidered ,the first rotational sublevel of the lower 
level. In the case (c) we could not obtain an em­
pirical relation for the intensities of the a groups 
for the 29 and 0 kev levels, leaving therefm1e only 
cases (a) and (b). Upon calculating the Clebsch­
Gordan coefficients that enter into (1), and con­
sidering that by the parity rule l can be only 
even, we obtain for case (a) the following ratios 
for the intensities of the groups for the 29 and 0 
kev levels 

-!i:_o= _ 2 _ e-14.2·0.029 
J0 fo+ 1 

(2) 

{Here l = 2 and m = 2, and the terms with l > 2 

in the sum of Eq. {1) can be neglected). Relation 
{2) assumes the empirically-established value of 
5%: 19%, either when the spin of the ground state 
of the daughter nucleus { Th227 ) is I0 = ~2 , or when 
I0 = %. We therefore conclude that the spin of the 
lower level of Ra223 is either % or %. Calcula­
tions made for case (b) lead to I0 = %, which, 
however, from considerations given in reference 2, 
is excluded. 

The same method of calculations can also be 
applied to the calculation of the spin of the 286-kev 
ground state of the third rotational series. The 
307-kev level must, for the same reason, be taken 
as the first sublevel of this series. Since a mag­
netic dipole 286 - 0 kev transition and an electric 
dipole 286 - 238 kev transition were empirically 
established in reference 1, the only assumption 
that can be made is I = I' = I0 -1, for the 286-kev 
level and I = I0 and I' = I0 -1 for the first sub­
level { 307 kev). In both cases we have l = 2 and 
m = 1. The calculated ratio of the intensities of 
the a groups for the 307 and 286 kev levels is 

Jzo7 3 (2lo- 1) e-14.2·0.02 
Jzss = l:l (/o- 1)(2/o + 3) {3) 

and when I0 -;, ~2 and % it is close to the empiri­
cal ratio, 1%: 17%. The best agreement occurs in 
this case for the second value, corresponding to a 
spin of % for the lower level. The calculated ratio 
of the intensities for the a groups of the 59-kev 
and 0 levels is ~ 1.3; the empirical value is 0.9. 

Sliv and Peker4 computed the effect of the non­
sphericity of the nucleus on the transparency co­
efficient of the nuclear barrier for an a particle 
with velocity {3 = v/c. This effect is introdu9ed 
into the probability of the a decay by the factor 

P = exp{- 1 ~;~ f V x(.l- x) c}, (4) 

where x = Ep/V0, with Ep being the decay energy 
and V0 the maximum height of the potential barrier; 
t is the relative deformation of the nucleus. The 
calculated ratio of the foregoing intensities agrees 
with the empirical values at a difference of 0.1 in 
the relative deformations {elongations) at the 
59-kev and 0 level. For the 238-kev and 0 levels, 
the difference becomes 0.15. Both values are fully 
acceptible and readily explain the empirically es­
tablished fact that the rotation constants B for 
the first and third rotational series ( 4.5 and 4 kev) 
coincide approximately with the rotation constant 
( 5 kev) of the second rotational band, considered 
in reference 2. 
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As is well known, the spin operator is defined by 
an antisymmetric tensor of the third rank, i.e., it 
is a pseudovector: aJ.t = ( 0', ip1). In previous papers 
it has been shown1•2 (cf. also Sections 17-20 in ref­
erence 3) that the longitudinal polarization of free 
Dirac particles can be characterized by the opera­
tor (O'•k)/k. This operator is an integral of the 
motion with eigep.value s. We shall try to relate 
to the quantity s not only the longitudinal polari­
zation, but also the transverse and time components 
of the spin vector. 

The wave function for positive energy and with 
inclusion of the spin states has the form (cf. refer­
ences 1-3) 

Here 

1 
sf (K) cos Bs l 

bs = ~ sf (K) sin Os ei9 

¥2 f (- K)cos 0, 

f (- K) sin Bsei9 

f (K) =VI + k0/K, Bs = BJ2- ("'/4) (1 -- s), 

K=Vk2 +k5, ~1=kjK. 

(1) 

(2) 

The amplitude Cs describes the state with longi­
tuginal spin component s = ± 1, and () and cp are 

the spherical angles of the vector k. 
The transverse and time components are not in­

tegrals of the motion, and therefore they can be 
characterized only by the average values 

CIJ. = K ~ Vcr!J. ~d3x, (3) 

where the factor K = k0 ( 1 - /J~) - 112 is introduced 
in order to preserve for the average values i;J.t 
the same relativistic covariance as possessed by 
the expression lfl+aJ.tlfl· 

Let us introduce an auxiliary coordinate system 
in which the z axis is directed along the momen­
tum k. Then, using the fact that for this system 
() = cp = 0, we find 

c3 = K (Ct C1- c±1c-1> = Ks 

(longitudinal component); for C1 »= 0 and C _1 »= 0 
the quantity I s I will be smaller than unity: 

C1 = ko(Ctc_1 +C:!::1Cd = k0 V1-s2 coso, 

C2 = iko (C:_1 C1 - ct C_I) = k0 V 1 - s" sino 

(transverse components); o is the phase differ­
ence between the complex amplitudes C1 and C_1 . 
Finally, ?;4 = ik ( ctc1- C:J.:1 C-1) = iks is the time 
component.* 

For an unpolarized beam of electrons s = 0 
and the phase o is a rapidly changing quantity, 
so that on the average cos o and sin o go to 
zero. 

Partial polarization is also possible: for ex­
ample, 0 < Is I < 1, and the angle o is again a 
rapidly changing quantity. For complete polari­
zation the quantities s and o are fixed constants. 
In this case one can make one of the transverse 
components zero by a rotation around the axis k 
and then we shall have ?;3 = Ks, ?;1 = ko ( 1- s 2 )172, 

t2 = 0, and ?;4 = iks, i.e., the quantity s will de­
termine all the components of the spin vector. 

Let us assume that in some coordinate system 
the momentum vector kJ.I- (k, iK) is parallel to the 
spin vector, s = 1, i;J.t (Kk/k, ik), i.e., the two 
vectors make the same angle ek = es = () with the 
z axis. Then in a new coordinate system moving 
relative to the first with the velocity c{3 directed 
along the z axis these angles are already differ­
ent:t 

coso~ =(~1 cos e- ~)JV (1- f-1~ 1 cos 0)2- (1 - ~2 ) (1- f:ii), 

cos 0~ 

owing to which the quantity s' is smaller and is 
given by 


