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The method with which Fock1 investigated the wave function of the 1s state of helium is 
generalized to an arbitrary system of charged particles and to states of any symmetry. 

l. In 1954, Fock1 established the fact that the wave 
function of the 1s state of helium and helium-like 
ions could be expanded in a double series of inte­
gral powers of r = ..j r1 + r~ and ln r, where r 1 
and r 2 are the distances of the first and second 
electrons from the nucleus. In this case, the proo~ 
was made by a method of successive determination 
of the expansion coefficients, which were homogene­
ous functions of zeroth order in the cartesian coor­
dinates of the electrons (if the origin of the coordi­
nates is fixed in the nucleus). We shall show that 
an expansion of this type, which we shall call a 
Fock expansion, has a very general character and 
is valid for any system composed of an arbitrary 
number of charged particles; there is also no need 
of placing any restrictions on the symmetry of the 
wave function. 

As an example, we consider an N -electron 
atom. (generalization of the results to more com­
plicated systems presents no difficulties and is 
discussed below). The Schrodinger equation for 
the wave function of a stationary state (in atomic 
units) then has the form 

Here x11 ••• , x3N are the cartesian coordinates of 
the electrons, 1!.3N is the Laplace operator in the 
configuration space of 3N variables, while the 
potential energy U contains the Coulomb interac­
tion of the electrons with the nucleus and between 
themselves, and is a homogeneous function of the 
coordinates of order -1. We introduce spherical 
coordinates in the configuration space. Then Eq. 
(1) takes the form 
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where r = ( xt + . . . + x~N) 112 , l!..;N is the Laplace 
operator on a sphere in a space of 3N dimensions, 
and V is a vector function of 3N - 1 spherical 
angles. 
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We shall now seek a solution of this equation in 
the form of a series 

(3) 
n P 

where anp are certain functions of the spherical 
angles which must be determined, and the sub­
scripts n and p can take on integer values only. 
Substituting this expansion in Eq. (2), we obtain a 
system of equations for anp: 

=- (P+ 1) (2n + 3N- 2) an. P+l-(P+ 1) (p + 2) an. P-!-2 

(4) 

We shall carry out further investigation of this 
system by a method which was assumed by Fock 
for the helium atom, and we shall not therefore 
give the details of all the analysis. 

First, we note that the factor n ( n + 3N- 2) on 
the left-hand side is precisely the eigenvalue of 
the operator l!..;N· If we set the right-hand side of 
Eq. (4) equal to zero, then its solution will be a 
linear combinatio"n of the generalized spherical 
functions <I>n of order n on the sphere in the 
3N -dimensional space (we shall call them, here 
and below, spherical harmonics). With accuracy 
up to the same linear combination, both the solu­
tions of Eq. (4) are determined; however the solu­
tion exists in this or that case only when the right­
hand side of the equation is orthogonal to all 
spherical harmonics of order n.* 

Another important property of the system (4) 
is that the coefficients a appear on the right hand 
side of the equation for the coefficient anp for 
which either the first index is smaller than n, or 
the second index is larger than p. It then follows 

*The function V on the right-hand side of Eq. (4) con­
tains singularities; however, these singularities are weak and 
do not affect the finiteness and continuity of the coefficients 

anp· 
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that if the coefficients anp are known for suffi­
ciently small n and sufficiently large p, then, 
as a consequence of the "triangularity" of the sys­
tem, we can determine the anp successively for 
any n and p. To satisfy these conditions we can, 
in the first place, require that all the terms of the 
series (3) be finite at r = 0. For this, it is neces­
sary to set all the anp equal to zero for n < 0, 
and all the a0p equal to zero for p > 0. In the 
second place, we must require that, for any fixed 
n, but for sufficiently large p, the coefficients 
anp must vanish. This condition is necessary in 
order that the expansion be single-valued. 

We can then solve the system (4) successively 
for n = 0, 1, 2, .... , and for each fixed n, be­
ginning with the largest p for which the coeffi­
cient anp is different from zero. Setting n = 
p = 0, we obtain a 00 = const. Further, let a1,p+t> 
a1,p+2, ••• be equal to zero. Then, successively 
solving the equations for a1,p, a1,p-1> .... , a10• 
and satisfying tM conditions of orthogonality, we 
obtain a1,p = a1,p-t = ... = a10 = 0; the coeffi­
cient a11 is uniquely determined, and a10 - with 
accuracy up to a linear combination of spherical 
harmonics of first order. Then, solving Eq. (4) 
for n = 2, 3, .... , we obtain the expansion 

oo n 

(5) 
n=O P=O 

where the coefficients ano are determined with 
accuracy up to a linear combination of spherical 
harmonics of order n, and all the remaining co­
efficients are established uniquely. All the aup 
for p < 0 vanish, due to the presence of the fac­
tors p+1 and (p+1) (p+2) on the right side 
of equation (4) for the coefficients an,p+t and 
an,p+2, respectively. The Fock expansion for the 
wave function has such a form if we do not set any 
considerations of symmetry on the potential en­
ergy U. 

We can further take into account the fact that 
the energy operator is invariant relative to inver­
sion (i.e., change of sign of all coordinates), and, 
consequently, the solutions of Eq. (1) must be either 
even or odd. Then, in a number of cases, the par­
ity of the right side of Eq. (4) and of the spherical 
harmonic of order n will be different; the orthog­
onality condition will be satisfied automatically, 
and certain coefficients anp vanish. Further­
more, let us consider that some of the first terms 
of the expansion with n = 0, 1, ... , k -1, can be 
equal to zero. For this reason, the coefficients 
anp again vanish and we obtain the expansion 

co (n/2] 

~ = 2; ~ Gn+k, p rn+k (ln r)P, (6) 
ll=Op=O 

in which only the coefficients ak 0, ak+2 0, ••• are 
' ' determined non-uniquely, with accuracy up to linear 

combinations of spherical harmonics of k, k + 2 , 
... , respectively. The parity of the function (6) 
coincides with the parity of the number k, which 
can take on the values 0, 1, 2, .... If k > 0, then 
the wave function 1/J vanishes for r = 0. The ex­
pansion is of just this type for the two electron 
system and for k = 0 was obtained in reference 1. 
Comparing the exact functions considered here with 
the approximate-functions, obtained by the method 
of separation of variables, it is easy to become con­
vinced that the number k is equal to the sum of 
the azimuthal quantum numbers of all the electrons. 

The solution of the Eq. (1) in the form (4) is ob­
tained nonuniquely. For each fixed n, there re­
main arbitrary coefficients for the terms rn<Pn ... , 
where <Pn... is the set of spherical harmonics of 
order n. Such a lack of uniqu~ness is obtained also 
in the solution of the Laplace equation in 3N di­
mensional space - its character is determined 
only by the differential part of the operator and 
is not connected in explicit fashion with the poten­
tial energy U. In our case, as also for the Laplace 
equation, this non-uniqueness is removed by the 
imposition of boundary conditions, i.e., by giving 
the asymptotic form of 1/J for r ---. oo, 

In our consideration, the spherical symmetry 
of the problem (in ordinary three dimensional 
space) has not been taken into account. Thanks 
to this symmetry, we can look for a general eigen­
function of the energy operator H and the oper­
ator of the square of the total angular momentum 
m 2• Then the dependence of the coefficients anp 
on those angles which characterize the simultane­
ous rotation of all the N electrons around the 
nucleus can be investigated independently of the 
explicit form of the operator H for each of the 
eigenvalues of the operator m 2• For example, 
the function 1/J does not generally depend (for the 
S state ) on these angles, and thus the number of 
arguments in anp is decreased by three. For the 
case N = 2, which was investigated by Fock, anp 
depends only on two parameters: the angle e be­
tween the radius vectors of the two electrons, and 
the ratio of the lengths of these vectors r 1 /r2• It 
is easy to become convinc·ed that if we change to 
the variables R = r 2, e, a = 2 arc tan ( r 1 /r2 ) in 
Eqs. (2) and (3), then we get the Fock equation 
(3.10) of reference 1.* 

If the potential energy of the interaction between 

*A correction must be made in Eqs. (3.09) and (3.10) of 
reference 1: in the second term of the right hand side of Eq. 
(3.09) we must add the factor k, and in the first term of the 
right side of Eq. (3.10), we must add the factor k + 1. 
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the electrons is neglected in the energy operator H, 
then the variables are separated and the problem 
can be solved exactly; the wave functions can be 
expanded in integral powers of r and thus the log­
arithmic terms in the expansion (3) should be ab­
sent. Actually, it is not difficult to show that in this 
special case the expression 2Van-1,0 - 2Ean-2,o 
is orthogonal to all the spherical harmonics of 
order n, whence it follows that all the coefficients 
anp with p > 0 vanish. 

So far, we have assumed that the potential en­
ergy U = U _1 is a homogeneous function of order 
- 1. However, if it happens that the function U 
can be represented in the form of a series 

u = U-1 + Uo + U1 + ... 
= r-1 V - 1 + V0 + rV1 +. · ·, (7) 

where Ui are homogeneous functions of order i, 
while the functions Vi depend only on the spher­
ical angles, then on the right side of Eq. (4), the 
term 2Van-i,p must be replaced by the expression 

2 (V -1 an-1. P + V0 an-2. P + V1 an-3, P +. · .), (8) 

in this case all the characteristics of the set (4) 
are preserved, and the solution can be obtained in 
the same way in the form (5). It is then evident that 
the expansion (5) remains valid for the potential en­
ergy of very general form, in particular, for the 
presence of an external electric field or for the 
placing of the origin of the coordinates of the nu­
cleus at an arbitrary point of space. 

It is also evident that similar considerations 
are applicable to an equation of the type (1), if a 
differential operator with constant coefficients, 
which can be transformed into a Laplace operator 
by a linear transformation of coordinates, re­
places the Laplace operator. 

This, for example, takes place for a quantum 
system of charged particles with different masses. 
In this case the role of the parameter r is played 
by the quantity 

As is well known, this very same quantity is widely 
used in the classical consideration of the many 
body problem. 

Thus the Fock expansion is valid for a very wide 
class of equations in partial derivatives. It is a 
generalization of the well known expansion of the 
solution of ordinary differential equations in the 
vicinity of a regular singular point which contains 
a logarithm only in the first degree. 

Consideration of the Fock expansion for a wave 
function of a many-electron system is evidently 

necessary in the case when the functions are com­
puted with a high degree of accuracy, for example, 
for two electron systems by the Ritz method in 
high approximation. The attempt at multiple cal­
culations2•3 shows that if the test functions do not 
take into account the behavior of the wave function 
close to the nucleus, then it is extremely difficult 
to obtain the accuracy required for a comparison 
of the relativistic and radiative corrections with 
experiment. 

In some cases, the matrix elements are strongly 
dependent on the behavior of the wave function close 
to the nucleus; the calculation of the Fock expansion 
is then especially necessary. Thus, for example, 
this is the case in the calculation of the matrix 
elements of the operator H2, and for just this 
reason the estimate below for the energy of the 
ground state of helium in references 3 and 4 is 
much worse than the corresponding estimate above 
by the Ritz method. It is also evident that the be­
havior of the wave function close to the nucleus is 
important in the calculations of the interaction of 
the electronic shell with the nucleus. 

It must therefore be expected that the Fock ex­
pansion, which takes into consideration the behav­
ior of the wave function in this important region 
finds application in a wide variety of atomic cal­
culations. 

A detailed investigation of the solution of the 
set (4), the connection of the Fock expansion with 
other types of expansions of wave functions of he­
lium, the possible generalization of this expansion, 
and also certain other problems will be set forth 
in a paper by A. M. Ermolaev, which will appear 
in the "Herald" ( Vestnik) of Leningrad University. 

In conclusion, we thank Academician V. A. Fock 
for his valuable advice. 
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