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Two fermion fields are considered in a space of one dimension (and in time), with interac­
tion of each field with itself and of the two with each other. The first term in the expansion 
of the vertex part in an asymptotic series of well known form is obtained. It is shown that 
within certain limits the renormalized charge can have an arbitrary (nonvanishing) value. 

IN a number of papers1- 3 attempts have been made 
to deal with a relativistically invariant model of a 
field theory - the one-dimensional four-fermion 
interaction. 

It was expected that the relation between the re­
normalized and bare charges in this theory would 
be such that the renormalized charge would not 
vanish when one goes to the limit of a point inter­
action. 2 A more detailed examination showed, how­
ever, that on account of a certain special cancella­
tion of terms in the perturbation-theory series the 
theory contains no divergences at all, so that there 
is no charge renormalization and the question of 
the vanishing of the charge simply does not arise. 
In the present paper we consider two spinor fields 
in a one-dimensional space, with interaction of the 
four-fermion type between the two fields and of 
each field with itself. There is then a logarithmic 
divergence in the vertex part, and consequently an 
infinite charge renormalization. Unlike the vari­
ous three-dimensional types of field theory, how­
ever, in which up to now it has not been possible 
to avoid the vanishing of the renormalized charge 
in the point-interaction theory, in the present model 
it is possible to construct a renormalized solution 
(or, more precisely, its asymptotic form for large 
momenta) with an arbitrary value of the renormal­
ized charge. 

1. THE EQUATIONS FOR THE VERTEX PART 

Let us consider two fermion fields 1/J and x 
that depend on a single space coordinate x and 
the time x0• 

In our case the Hamiltonian can be chosen in 
the form: 

H = ~ [(gl 1 4) (~cr~-<~) (~cr~-<~) + (g2 I 4) (xcr~-<x) (0~-<x) 
1-' 

The product 6 uf.-t x uf.-t is a mixture of interac-
f.-t 

tion types - S + P + V, which in the one-dimen-
sional case is the only completely antisymmetric 
type of interaction.2 For the first two terms in 
Eq. (1) this spinor form is necessary; in the third 
term uf.-t xuf.-t can in principle be replaced by an 
arbitrary invariant operator oj xoj, so that 
u f.-! xu f.-! has been kept here just for simplicity. Thus 
we are dealing with the one-dimensional analogue 
of the "universal interaction" of the type proposed 
by Feynman and Gell-Mann. 

The introduction of terms of the type ( lfuf.-tx) x 
(lfuf.-tx) into the Hamiltonian makes the problem 
much more complicated, and this case is not con­
sidered here. We now introduce a field <I> a == ( ~) 
with the components 1/J and x. Then Eq. (1) 
can be rewritten in the form 

H ~= LJ [(gl I 4)(Qlcr~-<-rl<D) (<Dcr~-<-rl<D) 
1-' 

The matrices Ti act on the "isotopic" index of 
the function <I>a. 

The most general form of the vertex part is 

where O!ik is a set of scalar functions, and Ti 
and Tk are all possible two-rowed matrices. It 
can be shown, however' that the equations for r 
are satisfied by the following spinor form:* 

(2) 

*This is a consequence of the law of conservation of the 
number of particles If; and X• which follows from the Hamil­
tonian (1). 
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A method for obtaining an integral equation for 
r in the asymptotic region p2 » m 2 has been de­
veloped by Dyatlov, Sudakov, and Ter-Matirosyan.4 

In the present case we have to do with a situation 
entirely analogous to that considered in reference 
2. Carrying out some simple algebraic manipula­
tions, we get the following system for the "lying" 
and "standing bricks" (the definition of these func­
tions and some expiations about the equations are 
given in reference 2 ): 

L 

t~m = -- 2~ ~oc~(z)dz, 
~ 

L L 

f 2m = - ;" ~ oc~ (z) dz, f 3m = - 211t ~ oc; (z) dz, 
~ ~ 

L 

rpl(~) = 2
1" \ [oc~ (z) +:x; (z)] dz, 

t 
L 

P2 m = }" ~ [oc~ (z) +:xi (z)] dz, 
~ 

L 
1 \" 

tpa m = 21t.) [ocl (z) + oc2 (z)] :Xa (z) dz, 
~ 

A is the maximum momentum, and all the momenta 
entering and leaving the vertex part are of the order 
of p. In Eq. (4) the Green's function is taken equal 
to its zeroth approximation, since it is in general 
free from divergences. 2 From Eq. (4) it at once 
follows that 

L L 

oc1m = gl + 2: ~oc~(z)dz, 
~ 

oc2 m = g2 + 2: ~:xi (z) dz, 
~ 

L 
1 . 

rl.a m = g3 + 21t ~ [ocl (z) + oc2 (z)- :Xa (z)] :Xa (z) dz. (5) 
~ 

2. SOLUTION OF THE INTEGRAL EQUATIONS 

Combining the first and second equations of the 
system {5), we get the following system, which in­
cludes the third equation: 

L 

f m = A + ~ ~ tp2 (z) dz, 
~ 

L 

1 \" 
tp m = v + ~" j If (z)- 9 (z)]cp (z) dz. (6) 

~ 

Here we have introduced the notations 

f = a.l + a.2, tp = a.a. A= gl + g2. v = ga. (7) 

Since the independent variable does not appear ex-

plicitly in Eq. (6), it is convenient first to try to 
find f as a function of cp. The first equation of 
the system (6) then has the form: 

v 

f ="A + ~ ~ rp 2 (:!) dcp. 

From the second equation it follows that 

dp 1 d~ = - (f - p) p 1 2rr, 

that is, 
v 

(8) 

(9) 

I '~'' d<p' 
f(rp)=A-2J f(<p')-<p', (10) 

ql 

or 

df 1 dp = 2cp 1 (f- cp). (11) 

Equation (11) is a homogeneous equation; inte­
grating it in the usual way, we easily get 

(f- 2cp) (f + cp)2 =(A- 2v) ("A+ v) 2 = G3 • (12) 

Let us consider the important case G = 0. Here 
we have either: (a) A. = 2v, g1 + g2 = 2g3, f = 2cp, 
orelse (b) A.=-v, g1 +g2 =-g3, f=-cp. In 
each case we can substitute cp, expressed in 
terms of f, in the first equation of (6); we thus 
easily get the following expressions for the ver­
tex parts: 

f 2v v 
(a) m = 1- (vI 21t) (L- ~) ' cp (~) = 1- (v n") (L- ~) ' 

( ) gl- g2 v 
a.l ~ = -2- + 1- (vi :::7t) (L- ~) ' 

( ) gl- g2 v 
oc2 ~ = - --2- + 1- (v 1 2n) (L- ~) ' 

(b) f m = 1 + (v 1-:)v(L- ;) ' 9 (~) = 1 + (v 1 ;) (L- ~) ' 

'") gl- g2 v 12 :x1 (, = -2-- 1 +(vI"') (L- ~) ' 

) gl- g2 v 12 
OC2 (~ = --2- - 1 + (v In) (L- ~) · (13) 

When v = 0 we have for both sets of relations 
between the constants the results 0!1 = g1, 0!2 = g2, 
0!3 = 0, in agreement with the results obtained in 
reference 2. If g1 + g2 < 0, then for the usual rea­
sons the renormalized charge goes to zero, but if 
g1 + g2 > 0 the zero charge does not appear. Fur­
thermore, the connection between the renormalized 
and bare charges is given by the following relation 
(for example, in case a) or: 

v gl- g, v 
Vc = 1- vL12r;' g!c =-:::-- + 1-vL;2-::' 

(14) 

and the expressions for the renormalized vertex 
parts have no nonphysical pole: 
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(15) 

Let us now go back to the determination of the 
functions f and cp in the general case G = 
(A- 2v )1/3 (A + v )213 "" 0. Equation (12) in principle 
makes it possible to express the function cp in 
terms of ·f, after which the first of the equations 
(6) reduces to a quadrature. We shall, however, 
proceed in a different way, which allows us to get 
the solution in a more compact form. We define 
F ( ~ ) by the relation 

f + rp = (A + v) I F, 

and then from Eq. (12) we get 

f- 2rp =(A- 2v) f2, 

from which we have 

f = 2 ("A + v) _!_ + A- 2v f 2 
3 F 3 ' 

_ "A + v 1 "A - 2v f 2 
rp- -3-F--3- · 

(16a) 

(16b) 

(17) 

Substituting these expressions in the first equation 
of (6) and differentiating it with respect to ~, we 
find a differential equation for F. Separating the 
variables and integrating, we find 

F 

3x2 ~ xs~ as= ;;. (L- e), 
1 

oc = (: ~ ;vr, G = (A- 2v)'t• (A+ v)'t., 

F 
3oc2 \' ~=~In (F- a)2 (1 +a+ a2) 

j xs- as 2 (f2 + aF + a2) (1-1aj2 
1 

- V3 arc tan 2FV+_a + y3 arc tan 2 + ~ . (18) 
a 3 aV3 

Together with the (17), Eq. (18), which implicitly 
determines F, gives the solution of our stated 
problem. We shall now show that the solution we 
have obtained has the property of normalizability, 
and shall carry out the renormalization program 
explicitly. W~ introduce the renormalized charges 
Ac and v c as the values of the vertex parts f 
and cp when the incoming and outgoing momenta 
arereal (p2 =-m2, ~=0): 

A = 2 ("A+ v) ~ + A -2v f 2 

c 3 F 0 3 °' 
"A+v 1 "A-2v 2 

'~c=-3-F--3-Fo, 
0 

F, 

3oc2 ~ xs~ as= 2~ L. 
1 

From this we have 

(19) 

and 

(21) 

These formulas enable us to eliminate from 
Eqs. (17) and (18) the renormalized charges and 
the logarithm of the cut-off L: 

F 

3 2f2 ~ dx Gc occ o = ·- -e xs- a~Fa 27t ' 
F 0 C 0 

(22) 

Introducing the quantity F c ( ~) = F ( ~ )/F 0, we 
can verify that the renormalization invariants 
fc = f, cpc = cp can be expressed in terms of the 
renormalized quantities only: 

fc (e) = 2 ("I.e: vc) ; + Ac -;2vc F~, 
c 

(23) 

We have still to examine the problem of the zero 
charge in the general case. For this purpose we 
rewrite Eq. (19), which defines the function F0, in 
the following form: 

1 I (1 - a,)2 (1 + a,F 0 + a~F~) - n __ _::__ __ ~ __ : 
2 (1 + ac + a~) (1- a,F0)2 

, ;- 2 + ccc - 2 + a F G 
- v 3 arc tan v- + V 3 arc tan .~~ = i- L. (24) 

a, 3 a,F0 v 3 " 

For L - oo the right member of this equation 
goes to + oo for Gc > 0 and to - oo for Gc < 0. 
The left member can go to + oo if 1- acFo- 0. * 
Thus for G > 0, A > 2v the zero-charge situation 
does not arise, and the bare charges approach the 
following limiting values [ cf. Ea. (20)]: 

A+ v ~ (Ac + v,) oc;;-1 = G,, A- 2v ~ (/,,- 2v,) ot~ = G,, 

that is, 

(25) 

This limiting behavior can be understood in a 
qualitative way. All the divergence in the theory 
is due to the presence of the third term in the 

*If a.~F~ + a.cF• + 1-+ 0, then F0 is complex and the theory 
is non-Hermitian. 
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Hamiltonian (1) (cf. reference 2). When this term 
is absent ( v = 0, vc = 0 ), A. requires no renor­
malization, A.= A.c. In the general case the renor­
malization of A. still turns out to be a finite one. 

3. CONCLUSION 

Various attempts to construct a consistent phys­
ically useful field theory with nonvanishing renor­
malized charge have so far been unsuccessful. 5 

Therefore the idea has been put forward recently 
that it is impossible in principle for there to be a 
relativistically invariant Hermitian theory with a 
point interaction. We have analyzed here an ex­
ample of such a theory, though of course it is of 
no use for the description of physical phenomena. 
It seems to us that the very fact of the existence 
of such a scheme shows how complicated the prob­
lem is of proving rigorously the zero-charge result 
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