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A nonlocal theory is considered which corresponds to a modification of the Lienard-Wiechert 
potential (2). It is shown that if, in this version of the theory, the potential is assumed to 
satisfy the usual type of equation (3), the consistent relativistic treatment (many-time for­
malism) leads to self-contradictions already within the framework of the classical theory. 

AT various times a number of authors1- 3 inves­
tigated one of the versions of nonlocal electromag­
netic field theory from different points of view. 
This version is based on a modification of the form 
of the Lienard-Wiechert potentials. Instead of the 
usual way of writing, 

A~-< =' - e (u~-< (r') I R,u, (r')) 2 (1) 
R, = 0 

(where uJJ. is the four-velocity of the charge, 
Rv = rv - rv is the difference of the coordinates 
of the point of observation and the charge), one 
starts from the following expression: 

A~-< = - e (u~-' (r') I R,u, (r')) R2+a'=o· (2) 
' 

Here a is a new constant with the dimension of 
a length. It is further assumed that the potential 
satisfies the usual equation 

, A 4'". 
[J 1-' =- (;fi-<, (3) 

which essentially defines the current. In the static 
case uv = ( p, 0, 0, i), and (3) leads to the charge 
density 

p (r- r') = (e 1 4o.) 3a2 1 ( R2 + a2 )'1•, (4) 

i.e., the point charge is spread out. Analogously, 
the current is spread out in a more complicated 
way. In this theory the field at the location of the 
charge is finite, and so is the self energy. 

The aim of the present paper is to show that 
this approach is unsatisfactory, and that self-con­
tradictions arise from the adoption of the usual 
type of equation for the potential leading to a 
spreading out of the charge: the classical system 
of equations for charged particles is internally 
inconsistent. For the proof we make use of the 
many-time formulation of the classical electro­
dynamics of a system of charged particles.4 We 
assume that each particle, and the field, has its 
own time, different from that of the others. The 

interaction for such a system may be written in 
the form 

S = ~ g~[-mnc2.+ Uv(rn, tn) 
n=l o 

X~ Pn (r- rn) Av (r, tn) dr]l/ I- ~~din} 
t• aA 2 

+ ~ dt H-it (ax;) J dax. (5) 
0 

The Hamiltonian of the particles is 

H~=~Pn(r-rn)cp(r, tn)dr+ 

+c[m~c2 +(Pn-+~Pn(r-rn)A(r, tn)drYf'• (6) 

the Hamiltonian of the field is 

(7) 

where 

We note that, in the many-time formalism, the 
electromagnetic field is described by the free 
Hamiltonian and the corresponding free field equa­
tion DAJJ. = 0. A current at the right hand side of 
the field equation appears only if the transition to 
a single time is made. 

For the following it is convenient to go over to 
different canonical field variables. Let 

A, (r, t) = v-•t,~ [ :/, cos (k ·r- kct) + cQ/, sin (k·r- kct) ]. 
k 

4o.Ilv(r, t) = (V-'I•S[~P'ksin(k·r-kct) 
k c 

- Q'k k cos (k • r- kct) J. (8) 

Pk and Qk are the new canonical variables: 
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[P~, Q~·] = 4no~"vokk', [P'k, P~·] = 0, [Q'k, QJ:·] = 0. (9) 

Expressions (8) explicitly give the time dependence 
of Pk_ and Qk_. 

The field Hamiltonian in the new canonical vari­
ables has the form 

H = ~ ~ [(P/,) 2 + c2k2 (Q'k)2]. (10) 
k 

The terms in the Hamiltonian for the particles 
which depend on the field are conveniently rewritten 
in the following way: 

~Pn(r-rn)Av(r, t,)dr 

pv 
= ~Pn(r- r,) [v-'1'L(T cos (k•r- kct,) 

k 

+ cQ'k sin (k•r- kctnl)] dr 

= ~ Pn (R) [v-'1'~ ( ~k cos (k• R + k•rn - kctn) 
k 

+cQ'ksin (k·R + k·rn-kct,))]dR. 

Since· Pn (R) depends only on R2, this expression 
becomes 

v-';,~ [(~ Pn (R) cos k·R dR) (:'kcos(k· rn- kctn) 
k 

= v-';, en~ f (k) 
k 

( pk v ) X k cos (k• rn -· kct,) + cQk sin (k· rn- kct,) , (11) 

where 

f(k) = :n·~Pn(R)cosk·RdR. 

The Hamilton-Jacobi equations for our system 
of charged particles are written in the following 
form: 

(n = 1 ... N). (13) 

The condition of consistency for such a system of 
equations is (see, e.g., reference 5) 

(a2 1 at,. at,- a2 1 at,at,·) s (tl ... tN) = o. (14) 

According to (13) this leads to 

( as v as\ 1. aHn r,, tn, arn, Qk, aQI, 1 at,· 

( as ~" as)/ - aHn· ·r,·, t,·, 0-, Qk, -. at,= 0 
r n' .aQ~ 

or 
iJH n a2s aH n a2s 

~~,...--,---+ --
a(aSjar,) atn.ar, a(aSjaQ/,)atn.aQ'(,_ 

aH n' a2s aH n' a•s 
a(aSfar,.) ·atnar,.- a(as;aQ~) at,aQ~ = 0· 

We note that as/arn and as/aQk_ correspond to 
the canonical momenta of the particles and the field 
and that the order of differentiation with respect to 
the time and to the coordinates (of the particles 
and the field) can be interchanged if the condition 
of consistency is satisfied. The last expression 
can then be rewritten in form 

aHn aHn' aH, aH,. aH,. aHn aHn' aH, 
ap, arn. + aP'k aQk - ap,. ar,. - ap~ aQ~ = O. 

Since always 8Hn/8Pn' = 8Hn/8rn' = 0 (n ;" n'), 
we finally get instead of (14) 

[Hn, H,·] = 0. (15) 

Here [ Hn, Hn'] is the classical Poisson bracket. 
It is clear from the foregoing that in our case the 
Poisson bracket is calculated from the canonical 
field variables only. 

From (6) and (11) we have 

H e, e,, c J f2 (k} 
[ "' H,·] = -v-LJ l-k- [cos (k•rn- kct,) 

k 

x sin (k•r,·- kct,.)- sin (k• r,- kct,) cos (k· r,·- kct,·)] 

~{ t• kk) sin [k• (r,- r,·)- kc (tn-t,·)]} 

1 
= (2")" enen•C(1- ~n~n·) 

X~ t• kk) sin [k• (rn- fn•)- kc (tn- tn•)] d3k. 

Finally, 
en en. c 

[H n, Hn•J = {21t')3 (1- ~n/3n•) 

\ t• (k) . 
X.) -k- sm [k• (rn- r,•)- kc (tn- tn·)Jd3k. 

In the case of a point charge. f (k) = 1, and the 
expression 

- (2rc)-3 ~ sin [ko (r,- rn•)- kc (tn-t,·)] d:: 

(16) 

= (27tf3 ~cos k • (r,- r,·) sin kc (tn-t,·) d:ck = D (Xn- Xn•) 

agrees with the well-known commutator fJlllction. 
For point particles the conditions of consistency 
are therefore satisfied everywhere outside the 
light cone and hence, what is especially important, 
in the space-like region. 
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In our case f ( k) is equal to unity, and 
00 

f (k) = 3a2_ \ cos k•R ~~ = 3a2 \ _ sin kR , RdR 
4rcj (R2+a")t' j k(R2+a2)1' 

0 

00 

= a2 \' cos kR ,1 dR = kaK1 (ka). (17) 
~ (R 2 + a 2) '' 

Here K1 is the Hankel function with imaginary ar­
gument. Since f ( k) depends only on the absolute 
value of k, the integral expression in (16) becomes 

00 

-I 4rc I\' f2 (k)sink/rn -rn·lsinkc(tn-tn·)dk 
rn- rn' ~ 

0 
00 

2"a2 
\' k2 Ki (ka) {cos [k ([ rn- rn• I + C (tn- tn·))] 

lrn-rn•l j 
0 

-COS [k (I rn- fn• J- C (tn- ln•))]} dk 

and therefore 

[H H •] - en en' c (1 R ~ ) 2 
"' n -4rc"frn-rn•l -l"nrn' a 

00 

X~ k2 Ki (ka) {cos [k ([ rn- rn· I 
0 

+ C (tn- tn·))]- COS [k (I rn- fn• 1- C (tn- tn•))]} dk. (18) 

The integration cannot be performed analytically. 
The integral can, however, be evaluated approxi­
mately near the light cone. For this purpose we 
make use of the integral representation 

00 

kK (ka) = a\' cos kR dR 
1 .\ (R" + az)'/, 

0 

and change the order of integration in the integral 
(18). Using the notation 

I rn- rn· I+ c (tn- tn·) = ~1. I rn- rn· 1- c (tn- tn·) = 62; 

we have 
00 

~ k2Ki (ka) [cos M 1 - cos M 2 ] dk 
0 

We note that .6.da may be quite large for 
.6.2 I a « 1 and vice versa, for I rn- rn' I and 

(19) 

c (tn -tn') may be taken as large as one pleases. 
Let us assume that .6.2 la « 1, and let us neglect 
the terms with .6.1 in view of what has just been 
said. Making a series expansion, we then obtain 
from (19) 

- (3tt2 I 32a3 ) (I - 15~; I 32a2). 

With .6.da « 1, .6.da » 1 we then have 

i.e., this expression is different from zero on the 
cone and near the cone in the space-like region. 

An analogous calculation can be carried out for 
the case .6.1 la « 1, .6.2 /a » 1. Furthermore, we 
calculated the integral numerically for the value 
.6.2 la = 10, i.e., in a region which is comparatively 
far from the cone ( .6.d a was assumed to be suffi­
ciently large, so that the terms with .6.1 could be 
omitted). The result is 

Hence [ Hn, Hn'] is different from zero on the 
light cone and everywhere in the space-like region, 
~d, although it decreases fast with the distance 
from the cone, it nowhere reduces to zero, except 
at infinity ( .6.d a = oo, .6.2 I a = oo). * 

In other words, the conditions of consistency of 
the system (13) are not fulfilled in this version of 
the theory. 

In the process of quantization the classical 
Poisson bracket goes over into the commutator 
of the corresponding quantities: 

i'' i'' AA 

[Hn, Hn·Jcl --7-h [Hn, Hn' ]qu = h [Hn Hn•- Hn• Hn]· 

In the case of point particles this leads to (with 
f3n - Qn, /3n'- Qn', where Qn, Qn' are the 
Dirac matrices ) 

[H "' H n' lcl = - ihc2 enen• (~nXn•- 1) D (Xn- Xn•). 

the well-known expression for the Bloch condition.6 

The failure of [ Hn, Hn' lcl to reduce to zero in the 
space-like region in this nonlocal version of the 
theory must lead to similar difficulties in the quan­
tum region. 
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*This may also be seen qualitatively from expression (18), 
for .as ~1/a and ~2/a increase, the cosine begins to oscil­
late rapidly, thus making the value of the integral smaller. 


