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Within the framework of magnetohydrodynamics, under the assumption of ideal conductivity,
a study has been made of oscillations of a cylindral cavity in a completely ionized plasma
located in a magnetic field. It is shown that such a system is stable and that under certain
conditions no waves can propagate along the cavity.

II‘HE stability of an ideal conducting gas in a cyl-
inder with respect to small perturbations has been
studied by Kruskal and Schwarzschild! and by Shaf-
ranov.?

In the present paper an analogous method will
be applied to solve the problem of plasma oscilla-
tions in an infinite cylindrical cavity of radius a,
containing the conducting medium in a coaxial cyl-
inder of radius aj, in which a current I, is flow-
ing. In the equilibrium state the pressure of the
plasma on the cavity boundary is balanced by the
magnetic pressure resulting from the surface cur-
rents flowing at the plasma-vacuum interface.

The starting point is the system of equations
consisting of the magnetohydrodynamic equations
for an ideal fluid conductor

pdv/dt = [jxHl/c — Vp;

dp/ot + Vev =0, p = const-p; (1)
0H/ot = curl [vxH]; curlH = = 4= j/c ()

for the region within the plasma; the equations
H=Ve, Ap=0 (3)

for the vacuum; and the boundary conditions at the
interface,

H{H} = —4={p}; n({H) =0. 4)

Here H denotes the mean value of the field at the
boundary, and the letters in brackets denote the
magnitudes of the discontinuities in the correspond-
ing quantities at the interface, and n is the unit
vector normal to the plasma surface, directed into
the plasma. Since this surface moves with the
plasma, the relationship \

dn/dt = [nx[nxVu]], u=n v. (5)

must be satisfied.
In the equilibrium state v =0, and the plasma
is uniform in the z and ¢ directions, and the
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non-zero components of the magnetic field are
H°z and HY. It will be assumed that within the

plasma H?p= 0 and H°Z is uniform, i.e.,

Hgy = 2Ijcr, Hy = 0, Hj =const, HJ = const, (6)

where the indices 1 and 2 denote that the corre-
sponding value of the quantity refers to the cavity
and the plasma, respectively. Then according to
Eq. (4) we must have

a— H% -+ H = 8p,. (7

Solving the system (1) and (2) by the method of
small oscillations, subject to the boundary condi-
tions (4) and (5), we obtain the desired dispersion
relation*

1 K, ©

Q2 =f,(Q2, k) = Yz— (k* —Q2) [hf — TR0 (k)] (8)

under the conditions —7/2 < arg ¢ = /2, where

(@2 — k) (@ — g* k)

Qz__wzaz 2 Po 2 <)
! gk —(1+q) Q

[ Z’{g,

- ’

2
UT

qz = 2’122/7', ']" =9 [A? — ho® + 1],
hi=Hy[Hy, X, =aya,

L (8) Koy () — Ly (60) Koy (8) (4 )2\

p=l14 tn®K i i ,
b = K =L g K E

\

Im and Ky, being the modified Bessel functions
of order m.

It follows from the self-adjoint nature of the
operator which occurs in the linearized equation
of motion that the expression (8) has no roots in
the complex region. Hence in studying this expres-
sion 2it is sufficient to limit ourselves to real values
of Q*,

C)

*Here we assume, as usual, that all quantities are pro-
partional to exp i(kz + m¢ + wt).
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First of all, we observe that, although as Q2
varies from zero to — e« the function f;, (2%, k)
increases monotonically and

2 1 K, (#)

yet the dispersion equation has no solution for
Q%< 0. Thus Q is always real, and the system
is stable with respect to small perturbations for
which k = 0. However, if k =0, the dispersion
equation has the solution Q%=0 for any arbitrary
value of m when H?p =0, but only for m =0
when HY = 0; i.e., in this case we have a state
of neutral equilibrium.

Let us now consider equation (8) in more detail
for the case Q2 > 0.

1. ¢*<1, ie., vk >vl=HE/ 4mp,.

(a) m = 0. As the frequency varies from zero to
a*k?/(1 +q%), the function f, (22, k) decreases,
and for Q2% —q%?%/(1 +q?) it tends to the value
a%k?/(1 + g?); at the same time ¢ tends toward
infinity. With further increase in the frequency,
f, becomes complex, and then when Q2 = %2
it returns to the real domain again, varying from
+w for Q%=q%? to zero when Q2=k?% In the
region Q% > k? the function fm is always com-
plex, i.e., there is no solution. There is therefore
only a single branch, coinciding with the acoustic
branch at small values of k and qz.

(o) m = 0. Just as in the case m =0, the dis-
persion equation has no roots Q2 < qzkz. For Q2>
qzk2 the function fy, is positive, and varies from
+w at Q2 =q%k? to the value

2m am (k)
fm (B2 k) = 7 7

(10)
at Q% =k? and then becomes complex. Conse-
quently, solutions exist only for those cases where

k2> [m (K%, k), 11)

i.e., the only waves which can propagate in the sys-
tem are those with a wavelength greater than some

it (m) _ (m) (m)
critical wavelength A 27r/kcr » where ki

is the smallest root of the equation k% = fy, (k?, k).

In both of the above cases the frequency Q% lies
in the interval from q?k? to k2.

2. q® > 1. Inthis case f, is positive only when
Q% < q%k?/(1 + q%). For values of Q2 greater than
q’k%/(1 + g%) the function fp, is either complex
or negative; that is, the dispersion equation has
no solutions at all.

Thus we have seen that the dispersion equation
(8) has no solutions corresponding to acoustic or
Alfven waves in a gas. There is only a single mode
that vanishes as q — 1. For ¢?>1 no solutions
are possible at all; i.e., no wave-like motion is
possible.
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