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Formulas for the intensity of scattered light near transition points have been derived on the 
basis of the exact Gibbs expression for fluctuations of the parameter characterizing second­
order phase transition. These formulas are employed to estimate the minimum width of the 
temperature region near the transition point at which the usual macroscopic theory of phase 
transitions of second order becomes meaningless. The formulas are also used to substanti­
ate the validity of calculations of the scattered light intensity which are presented in refer­
ence 1. 

IN the work of Ginzburg and the author1 on the cal­
culation of the intensity of fluctuation light scatter­
ing in the case of second-order phase transitions, 
use was made of Boltzmann's principle. In this 
case the scattering intensity was divided into two 
parts. One of these, which is connected with fluc­
tuations of second order, gives the principal part 
of the observed scattering effect. Calculation of 
this part for the accepted thermodynamic potential 
leaves no question, since the expression for the 
fluctuation obtained with the help of Boltzmann's 
principle coincides with the exact Gibbs expres­
sions {see reference 2). The second part of the 
scattering in connected with fluctuations of fourth 
order, and calculation of its intensity requires a 
foundation which we shall delineate below. 

As is well known, 3•4 the intensity of light scat­
tering from fluctuations of the dielectric constant 
E is given by the formula 

I V2 (2")'1---.:--12 . 2 4nn . 
= (4n)• ~ uSq sm tfl• q = ~Slntjl. (1) 

here V is the volume in which the scattering takes 
place, 11.0 is the wavelength in a vacuum, cp is the 
angle between the electric vector of the incident 
wave and the direction of observation, 0 is the 
scattering angle, and 

!:l.sq = J- ~ !:lse-iq·r dr. (2) 
v 

Close to second order phase transition points, the 
fluctuations of E are produced by fluctuations of 
the characteristic parameter TJ {see references 
5 and 1), while, neglecting optical anisotropy, 

(3) 

The dependence {3) is obtained from the same con-

siderations as the dependence on 7] of the thermo­
dynamic potential F (see reference 6 ) . We note 
that in the complete expression for the quadratic 
fluctuations of E terms appear that are connected 
·with fluctuations of other thermodynamic variables, 
and also with mixed fluctuations of TJ and other 
variables. However, close to the transition point, 
where the fluctuations of TJ are anomalously large, 
one can neglect all other fluctuations and mixing 
terms in comparison with the fluctuations of TJ. 
This is the more valid in that the smallness of the 
mixing terms has been shown in reference 1 by 
direct estimation. 

Expanding .6.Tj in a Fourier series: 

A '\,l A 'k r k . 2n j 2n k 2n 
"'"'' = "-1 ke' . = I T nx + T ny + r nz 

k 

(4) 

(nx, ny. nz, are integers) and making use of (3), 
we obtain 

j'!:l.sq /2 = !:l.sq!:l.Lq = 4a271~AqA-q 

+ 2a2"'1o lJ A_qAq-kAk + 2a2"f/o ~ AqA-q-kAk 
k k 

+ a2 ~ Aq-kAkAk'A-q-k'· {5) 
kk' 

Expressions for the mean square of .6.Eq were 
obtained in reference 1 with the help of Boltzmann's 
principle. However, as is well known (see refer­
ence 2), the Boltzmann principle is not always 
valid; in particular, at the transition point, the pos­
sibility of its application is in considerable doubt. 
Nonetheless, the expression for the mean square 
fluctuation is an exact Gibbs expression for which 
it is impossible to speak of fluctuations of the 
higher orders. Therefore, additional justification 
is required for the calculation carried out in refer­
ence 1 where, in the calculation of the intensity of 
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the scattering, use was made of Eqs. (1) and (5), 
and averaging was carried out on the basis of the 
Boltzmann principle. This justification will con­
sist in the obtaining of an exact expression for the 
intensity of scattered light and a comparison of it 
with the expressions of reference 1 obtained with 
the help of the Boltzmann principle. 

1. The method of obtaining the exact Gibbs ex­
pression for the fluctuations of any order is given 
in reference 7. However, the concept of the ther­
modynamic potential of nonequilibrium states, 
which is essential in our consideration, was not 
employed there. Therefore, we shall given a brief 
derivation of these formulas by the method employed 
in reference 2, to prove that the Boltzmann expres­
sion for the mean-square fluctuation is the exact 
Gibbs expression. For the derivation it is neces­
sary to introduce the concept of the thermodynamic 
potential of nonequilibrium states. Let there be a 
certain parameter characterizing the lack of equi­
librium, TJ =~(X), where X is the aggregate of 
mechanical variables of the system under consid­
eration. The state with TJ ,.< TJo is brought into 
equilibrium with the inclusion of the external field 
with potential energy U, so that this state becomes 
an equilibrium one. Then 

\'A {'Y-H(X)-U}dX '1/ = ) '1/ (X) exp kT • (6) 

here H (X) is the Hamiltonian of the system, llf 
is the thermodynamic potential of the system lo­
cated in the field. The single-valuedness of the 
thermodynamic potential of the nonequilibrium 
state is achieved by laying an additional condition 
on U (for details see reference 2) which is sat­
isfied for U = a~ (X), a is some constant. 

llf (a) is the thermodynamic potential of a sys­
tem located in the external field U = a~ (X), and 
is determined by the relation 

\ { H(X)-a~(X) }dX '¥(a)= -kTln )exp - kT 0 (7) 

It follows from (7) that 

'1/ =a'¥ 1aa. (8) 

The thermodynamic potential of a nonequilibrium 
state corresponding to the value TJ is determined 
by the relation 

F ('l/) = 'Y (a)- u- ='¥(a)- aa'F I aao (9) 

Differentiating (6) after first setting U = a~ (X), 
taking (8) into account and then setting a= 0, we 
obtain 

(l\r,)2 = - kT'¥~ = kT IF~; (10) 

(L\'1/)3 = (kT) 2 'Y'~ = - (kT) 2 F~ I (F~)3 ; (11) 

(l\oy1)4 = 3 (kT)2 ('¥~) 2 - (kT)3'¥~· 

= 3 (kT) 2 I (F~)2 + 3 (kT) 3 (F~)2 I (F~)6 

-- (kT) 3F;;·· I (F~) 2 0 (12) 

Here the primes denote differentiation of llf and 
F by a and TJ, respectively, the index 0 signi­
fies that the derivatives are taken at a = 0 and 
TJ = Tlo· The derivatives of llf with respect to a 
are expressed by the derivatives of F with re­
spect to TJ by means of (8) and (9). 

In a similar way, equations are obtained fo!' 
the fluctuations of many variables. We now intro­
duce the following necessary expressions: 

L\r,1 L\-~k ~= kT (Fii/); (13) 

L\'fi,L\-~kl\r, 1 =(kT)2 <aFii/ 1 a'flp><F;:l>; (14) 

L\'ti,L\'1/kl\'f/1u'flm = (kT) 3 <F;;,,;)<aF;l 1 a'l/q><ar;/ 1 a'flp> 

+ (kT)3 <F;;,):,><F;l><a2Fii/ 1 ar,i·~q> + (kT) 2<F-,;/><Ft;;> 

+ (kT)2 <F-,;,):,)(Fi/; + (kT) 2 (F[,):,><Fii/) 0 (15) 

Here Fi~ is an element of the matrix inverse to 
the matrix with elements Fik = 82F/8TJii1TJk; the 
brackets < ... > ·denote that the derivatives are 
taken at the equilibrium values of all parameters. 

2. In the calculation of the intensity of light 
scattering in reference 1, the expansion 

F (P, T, r,) = F0 (P, T) + oc (P, Th2 

+ P (~, T) 'Yj4 + Y (~, T) oy1s + o•(grad 'Yi) 2, (16) 

was employed as the thermodynamic potential of 
the nonequilibrium states. This expression is fun­
damental to the macroscopic theory of second­
order phase transitions.6 In this case, it is as­
sumed that a = 0 at the transition point, {3 = 
const and y = const, far from the critical Curie 
point, and y = const close to this point. We shall 
now exhibit the region close to the transition point 
in which the expansion (16) becomes invalid if the 
coefficients a, {3, y behave in the manner shown. 

It was shown by M. A. Leontovich2 that the ther­
modynamic potential of nonequilibrium states [in­
troduced with the aid of (8) and (9)] is a minimum 
at equilibrium. However, this is not the only prop­
erty of F ( TJ), inasmuch as the fluctuations of TJ 
of different order are expressed by the derivative's 
of F ( TJ). The requirement of the positiveness of 
fluctuations of even orders represents certain con­
ditions on the derivatives of F ( TJ). Moreover, it 
is natural to require that the relation (S), for an 
arbitrary TJ in the region of values of interest to 
us, be satisfied for but a single a. In the case in 
which we are interested, this latter requirement 
gives nothing new and we make no use of it. 
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We now write down the necessary equations for 
the derivatives: 

F~ = 2 t:J.. -+ 3 ~.,~~ + 5 "Pi~; 

F;: = 12 ~'r10 + 20 n~; 

p~' = 12 [3 + 60 ,-,1~· 

We now consider the region of temperatures 

(17) 

{18) 

(19) 

T > ®, where ® is the transition temperature. 
Here 7Jo = o, F0' = o, F0 = 2a. The condition of 
the positiveness of the fluctuations of even order 
yields 

(20) 

The volume appears in this relation, since it has 
been taken into consideration that F ( P, T, 7J) is 
the thermodynamic potential per unit volume. 
Similarly, making use of the equation for the fluc­
tuations of sixth order, we can obtain a condition 
for y: 

(21) 

For T < ®, when Fo' ;r. 0, the condition of 
positiveness of the fluctuations is satisfied auto­
matically. However, there is another circumstance 
here which does not allow use to be made of the ex­
pansion {16) as close to the transition point as is 
desired. The fact is that for T < ®, Eq. (16) is 
the nonequilibrium thermodynamic potential of a 
system with two equilibrium positions 7Jo and 
-770, where 

To speak of equilibrium positions makes sense, 
naturally, only when 

(22) 

(23) 

where ~77 is the fluctuation about one of the equi­
librium positions. In the opposite case, one can­
not generally speak of equilibrium, and the possi­
bility of determining the thermodynamic potential 
is lost, not to speak of the fact that that the usual 
method of calculation of fluctuations loses its 
meaning when one considers that the fluctuations 
take place about a mean position. 

Setting {32 » 2ay, which is satisfied in particu­
lar for transitions that are far from the critical 
Curie point, and taking (17) and (10) into account, 
we get from (23) 

{24) 

Thus we can consider that the condition (20) should 
be satisfied above and below the transition points. 

We further note that in (20) and (24) the sign » 
should actually appear, and not >. For (24), this 

does not require any explanation. For (20), we 
see from (10) and (12) that ( ~77 )2 initially in­
creases with increasing (~77) 4 (with decreasing 
F0), and then decreases. It is natural to assume 
that an increase in ( ~77) 4 corresponds in reality 
only to an increase in ( ~77 )2, which is satisfied 
for the stronger inequality. 

Conditions (20) and (24) refer to the spatially 
homogeneous case, and do not take correlations 
into account. If by V we understand the total 
volume of the body, then these conditions are sat­
isfied everywhere.with the exception of an ex­
tremely narrow region in the vicinity of the tran­
sition point. But in consideration of fluctuations 
in small volumens, we must consider correlations, 
that is we must use not (20) and (24), but conditions 
obtained by means of successive consideration of 
spatial inhomogeneity and correlations. In this 
case, we must take the fluctuations of the Fourier 
components of . 7J into account and consider the 
gradient term in (16). Conditions (20) and (24) re­
main here also, as do conditions on the fluctuations 
of the zero Fourier components, while V denotes 
the total volume of the body. However, in this case, 
there are additional positive definite quantities, for 
example the intensity of the scattered light I, the 
condition of positiveness of which represents cer­
tain conditions on F ( 7J), in particular on the quan­
tity o. We shall give further details on this matter 
below after obtaining exact formulas for I. 

3. We now set about to obtain exact expressions 
for I. We denote the intensity of scattering associ­
ated with the first term of the right hand side of 
(5) by I2, that associated with the second and third 
terms by I3, and that associated with the fourth 
term by I4• As has already been shown, the value 
of I2 computed with the aid of Boltzmann's prin­
ciple coincides with the exact value; therefore it 
is necessary to compute only I3 and I4• Making 
use of (4) and (16), we obtain 

<F 1.2> = V (F~ + 2 oqi) oq, -q,; (28) 

<F1.2.3> = vF;;·oq,,-q,-q,; (29) 

<Fl,2,3,4) = Vf~'·o~,.-q,-q,-q.· (30) 

Here F1, ••• ,n denotes the derivative of F with re­
·spect to Aq1 ••• Aqu, oq1 ,q2 is the Kronecker sym­
bol. To express the right hand side of (14) and (15) 
in terms of (28) - (30), we renumber the variables 
Aq, that is, we renumber the vector q. We carry 
out the numbering on both sides of zero in such a 
fashion that if q1 and q2 have the corresponding 
numbers n1 and n2, and q1 = - q2, then n1 = - n2, 

and conversely. If we denote by n the total num­
ber of vectors with integral coordinates, smaller 
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in modulus than a certain kmax• then the indices 
of the matrix Fik will take on the values from 
- (n -1 )/2 to (n -1 )/2. We can arrive at a ma­
trix with such indices from the ordinary matrix by 
means of a transformation of the indices i' = i -
(n + 1 )/2, k' = k - (n + 1 )/2. This transforma­
tion is possible since n + 1 is an integer. 

It is seen from (28) that the elements in the 
matrix < Fik> that are different from zero lie 
only on the diagonal which is orthogonal to the 
principle diagonal. It then follows that 

(n-1)/2 

D((f>) = fl <Fa.-a>. (31) 
u=-(n-1)/2 

D ( < F>) is the determinant of the matrix < Fik>· 
As is well known, we have for an element of the in­
verse matrix 

(32) 

where F~j is the adjoint of the matrix Fik rela­
tive to the element Fki· Furthermore, 

(n-1)/2 

dj ni <F;,~ ) = lit,-k <h-b>· (33) 
b=-(n-1)/2 

Here ni denotes that < Fb -b> as a factor runs 
over all b except b = i. W~ have from (31)- (33) 

(34) 

Let us first calculate I3• In what follows we 
shall write 1Jp in place of Aq, where p is the 
number of the vector q. We now calculate 
< oFi~/o1Jp>. Taking (32) into account, 

ap-1 iJfadJ padi 
ik 1 ki ki iJD (F) (35) 

01Jp = l>(F) ~- D'(F) 01Jp ' 

Further, 

F;fl = (- I)'+k~(-1) [r •... Pk-1Pk+1···Pnl 

X F -(n-1)'2, Pn···F(n-1)}2, Pn (36) 

[Pt ... Pk-1Pk+1 ... Pn] denotes the number of dis-
orders in the permutation of Pt ... Pk-tPk+t ... Pn 
fromthenumbers -(n+1)/2 ... i-1, i+1, .. . 
(n -1 )/2. Summation is carried out over all per­
mutations. We differentiate (36) with respect to 
1Jp· On the right hand side there are n -1 sums 
over the permutations. We consider one of such 
sums: 

, iJF a, Pa 
'' F -(n-1)/2, p, • •. ~ • • • F(n-1)/2, Pn • (37) 

p 

We now set 1Jp = 0, that is, we consider the equi­
librium values for the derivatives. We shall show 
that for a "' - i, the expression (37) at equilibri-

urns values of 1Jp differs from zero only for i = 
- k. In fact, if i "' - k, for equilibrium values of 
its derivatives, the product (37) contains a term 
of the form < F -i• P-i> which differs from zero 
only for P-i = i, but this equality is not possible. 
It is easy to see that in such a case Pa = -a. It 
follows from (29) that in this case p = 0. If a = 
- i (this is possible only for i "' - k) then, by 
an argument similar to the foregoing, it is easy 
to show that Pa = - k. By virtue of (29) qi + qk = 
qp, where qz is the vector corresponding to the 
number Z. 

For a "' - i in the sum (37), considered at 
equilibrium, only one component is different from 
zero with p1 =- (n-1)/2, .. ·Pa =-a, .. ·Pn = 
(n -1 )/2. We shall determine its sign. The re­
quired number of rearrangements in it is maxi­
mum, that is, it is equal to 

n-2 

2J i = (n- I) (n- 2) /2. 
i=1 

Since n- 1 is divisible by 8, the number of re­
quired rearrangements is even. Taking into ac­
count, moreover, that i = - k, we conclude that 
this component is positive. For a= -i, calcu­
lation of the required rearrangements is some­
what lengthier. In this case we obtain a negative 
value. Thus we obtain 

n-1 
2 

X ~ D(<F>)/(Fa,-a)(Ft, -t) 
n-1 

a=--
2 

Carrying out similar considerations for 

(38) 

D (F)= ~ (- Iip, ... rnl F -(n-1)/2, p, ... F(n-1)!2.Pn• (39) 

we obtain 
(n-1)/2 

(8D(f)/8"1r>=Vf~'or.o ~ D((f))/(fa,-a). (40) 
a=-(n-1)/2 

From (35) and from (38)- (40) we obtain 

(8fii//8"1r> =-VF~Iiqr.q1 +qk/(ft.-t)(Fk,-k)· (41) 

For I3 we have 

/ 3 = C2a2'f/o {~ AqA-q-kAk + ~ A-qAq-kAk}• (42) 

where 

C = (V /4 '1t)2(2 'It/ 1-0)' sin2 cp. 

We now substitute (41) in (14) and (42) and 
obtain 
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/ 3 =- C 4 a2 'f/0Vf~' ~ (kT)2I(Fq, -q)(fk,-k)(Fq-k, k-q) 
k 

X [f~ + 2o (k- q) 2]. (43) 

Here we assume 'Y = 0, i.e., we consider a tran­
sition that is far from the critical Curie point. 
Changing now from summation to integration, 
we have 

2 4 12Q.,2 

I - V ( "') 2 (kT)2 1-' ·•o S . 2 • a-- (4n)2 "o a -21l + liq' sm <:p, (44) 

1 v-·-s=sna•qarctg(ql2 fol2o). (45) 

I4 is computed in a fashion similar to I3. This 
computation is rather lengthy; we therefore give 
only the result: 

/ 4 = Ca2 ~ .1kAq-kAk·A-q-k' 
k, k' 

= Ca2 ft_ V F~' ~ (kT) 8I(F k, -k) 
k, k' 

+ V2(F~)2 ~ (kT) 3I<fk,-ir.) 
k, k' 

X(fq-k. k--q) (fk', -k') (f -q-k', k'+q) (fq, -q) 

+ 2 ~ (kT) 2 I <F k, -k> <F k-q. q-k) }· (46) 

On the right hand side of (46) we omit terms that 
vanish upon subsequent integration over k. 

We denote the scattering connected with the 
first term on the right hand side of (46) by Iu, 
•with the second, by I43 . The scattering connected 
with the latter term is I4, computed with the aid 
of Boltzmann's principle. We denote it by I~. It 
was obtained in reference 1, whence 

/ o - v (2"')4 2 (kT)2 S . 2 
4-(4n)"\~a smcp. (47) 

In reference 1, I~ was written as I2• Transform­
ing in (46) from summation to integration over k, 
we obtain for I44 and I43: 

I v (2"')4 23P. (kT)3 S2 • 2 • 44 = - (4n)' "" a t' sm <:p. 

v (2"')4 2 18 ~·'11~ 3 2 • 2 I 43 = (4n)' ~ a _ 2a. +a(/' (kT) S sm tp. 

We also cite an expression for I2 obtained in 
reference 1: 

v (2"')4 2 2'11~ . 2 
/2 = (4n)' "o a "-2a.+liq'kT sm <:fl· 

(48) 

(49) 

(50) 

Here and throughout we consider only regions 
far from the critical Curie point. 

We now compare the exact expression for the 
total intensity of scattered light 

I= /2 +I~+ Ia + 14a + fu 

with the intensity I0 = I2 +I~, computed by Boltz­
mann's principle. For T > e, we obtain 

/2=/3•=/43 =0, 111° 

(51) 

The condition for the validity of the calculation 
carried out in reference 1, as also the condition 
for the validity of the expansion (16), takes the 
form 

3~kTS~ I. (52) 

For eji.ch given substance, S is a function of T 
and q. For fixed T, the inequality (52) must be 
satisfied for any q, since we are discussing the 
positiveness of I or, irrespective of the physical 
meaning of I, the positiveness of some positive 
definite combination of Fourier components of fl7). 
Thus, fixing T, we must prove whether (52) is 
satisfi~d for a q which brings about a maximum 
for S. It is easy to see that for fixed T, S is 
maximum for q = 0. In this case 

S = 1 I l61to'1• V F~ I 2. (53) 

Further, taking it into account that 6 ,..., a@ed2 

(the discontinuity in the heat capacity at the transi­
tion flc = a@e/,B and Fe= 2a@(T-e) for T 
>e), we write (52) in the form 

T- 8 ~ (31161t)2 8 (h 1 l:!.cd3) 2 • (54) 

For the a - ,B transition in quartz we have flc = 
4 x 107 erg/deg-cm3 (reference 8), e ,..., 103. Set­
ting d ,..., 10-7, we obtain from (54) 

(55) 

In this region of temperatures above the transition 
point the expansion (16) does not lead to a contra­
diction and the exact expressions are insignificantly 
different from the expressions obtained with the 
help of Boltzmann's principle. 

For the A. -transition in liquid helium, flc ,..., 107 

erg/deg-cm3, d,..., 2 x 10-8 (see references 9, 1), 
e ,..., 1. Substituting these values in (54) we obtain 

(56) 

For T < e such estimates do not present any fun­
damental difficulty, although there are rather tedi­
ous. As can be shown, the condition (54) holds with 
accuracy up to an insignificant numerical factor. 

We see in total that the conditions for applica-
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bility of the calculations reduce to the inequality 
(52). If it is not satisfied, use of the expansion (16) 
is not valid. If the inequality (54) is satisfied, then 
the results obtained in reference 1 remain valid 
both for scattering on fluctuations of second order 
and also for scattering of fluctuations of fourth 
order. 

In conclusion the author expresses his sincerest 
gratitude to Professor V. L. Ginzburg for suggest­
ing the theme and for valuable discussions con­
nected with the present work. 
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