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Formulas are derived for quadrupole oscillations of deformed nuclei. The interaction be­
tween the rotation and the oscillations is considered, and a general formula is given for the 
corrections to the level energy of the ground rotational band. Presently-available experi­
mental data for nuclei in the rare earth group are discussed and the difficulties encountered 
in the analysis are mentioned. 

EQUATIONS FOR BETA AND GAMMA-
OSCILLATIONS 

A study of the oscillational levels yields new in­
formation on the properties of deformed nuclei. 
Two types of quadrupole oscillations are consid­
ered: (1) Beta oscillations about the equilibrium 
value {30 along the deformation axis for an axially­
symmetrical nucleus (y = 0). (2) Gamma oscilla­
tions perpendicular to the deformation axis at equi­
librium value {30• 

We start with the Bohr Hamiltonian1 for a nu­
cleus consisting of a core and n external nucleons. 

3 n 
Ji2 '\,l (A ,, ~ (i) \2 I . 2 ( 21t ) 1 

+ 8B~2 LJ lx- LJ lx), sm r- 3 x + 2 Ccore~2 
K=l l=l 

(1) 

In the hydrodynamic approximation, in which the 
Hamiltonian (1) is written, there is a single inertia 
parameter B. However, such an approximation 
was found to be poor for real nuclei, and it became 
necessary to introduce three parameters: the iner­
tia parameters of the f3 and y oscillations, Bf3 
and By, and the moment of inertia J.* We assume 
the adiabatic approximation to hold, at least for the 
first oscillation levels of even-even nuclei, and 
average (1) over the internal states of the nucleons. 
Confining ourselves to small oscillations about to 
the equilibrium values f3 = {30 and y = 0, we can 
write the Hamiltonian (1) as 

H=E(p0)+H~+Hy+H,+U, (2) 

*In the Bohr Hamiltonian, B,e = B, By= Bf32 , and J = 3Bf32 • 

where 

(2a) 

(2b) 

fl,= (t, 2 f2J)(I 2 -/;); (2c) 

0 = (rt.2 1 y3J)( n- H). (2d) 

Here {31 = f3- {30, {31 « {30; Cf3 and Cy are 
parameters of the stability of the nucleus relative 
to f3 and y oscillations, which will be considered 
below. H13 is the Hamiltonian of the f3 oscillations, 
Hy that of the y oscillations, a~d Hr that of the 
rotation of the nucleus; finally, U takes into ac­
count the interaction between the rotation and the 
y oscillations.* In the derivation of the Hamilto­
nian (2) we assumed that in even-even nuclei n = 

~ ni = 0. Considering the rotation and oscillations 
to be independent in the zero approximation, we 
obtain a nuclear wave function in the form 

'FIKMn~ny = } 1 N 2/ 2 (I + OKo) ~n~ (i\) Cfn/1) X (xl ... Xn) 

(3) 

where N is the normalizing factor. 
The function 1/Jn/3 satisfies the following equa­

tion 
(4) 

Putting 1/J = exp (- 2{31 /{3 0 ), we bet 

(4a) 

*It must be noted that 0 does not take the interaction into 
A V 1i" A2 '"2 

account too accurately. In fact, the formula U = V:f T (II- I 2) 

contains still another factor on the order of unity, depending on 
the model. In the hydrodynamic approximation this factor equals 
unity exactly. 
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from which we get 

c~ = fiw~(n0 + 1h), w~ = VC~I B~, nB = 0, 1, 2, ... , (5a) 

h = exp (- B~w~pi I 2t,) H n~ (Pl V B~ws In); (5b) 

Hn{3 is the Hermite polynomial. 
The equation for the y oscillations is 

where K is the eigenvalue of the operator 13• 

Solution of (6) is 

(6) 

Cy =~ hwy (ny + 1 ), (!)' o= v Cy I B:.,, (6a) 

ny=KI2, Kl2+2, K;2+4 ... 

{0, 2, 4, . . for K : 0, 
1, 3, 5, . . for K- 2, 

( 2n -K K B w ) X "''K/2f - _Y __ . - + 1 . ...:r__:[ .,2 
I 4 ' 2 ' .'/i I ' 

F is the hypergeometrical polynomial. 

(6b) 

(6c) 

The rotational energy Er, according to (2c), is 

s, = (n12J)[l(l + 1)-K2 J. 

For the total energy of the nucleus we obtain 

EIKnsny = E (p0 ) + fiuls(ns +1/2) 

+ liwy(ny + 1) + (h 212J) [1 (I+ 1) -K2 ]. 

In the ground state 

E0 = E (p0 ) + 112 liws + liwy. 

the energy of the first {3 -oscillation level is 

9 (I= K = 0, ns = 1, 

(7) 

(8) 

(Sa) 

ny = 0) = E0010 - E0 = fiws, (Sb) 

and the energy of the first y -oscillation level is 

s(I=K=2, ns=O, ny=1)=fiwy+h2 (J. (Sc) 

The operator of the E2 transition is 

miL (E2) = it ZeR~oc: 
= ~ZeR2 [f3cosrD2 + ~sinr(D2 +D2 >]· (9) 47t 0 !LO y 2 !L2 !L-2 

The reduced probability of transition to the {3 -
oscillation level with spin I= 2 (we are speaking, 
naturally, of a suitable level of the rotational band) 
is 

B~f!l2 (E2) = ( irt z eR~ r LJ! (20v- 10 I PlD~o I 00000) 12 

" 
(10) 

In (10) we used the following matrix element 

<11 P1!0> = V fi I 2Bsws = (h2 I 4B~Csf1'. 

The reduced probability of a transition from the 
ground state to the y -oscillation level is 

(11) 

Here we use the matrix element 
,;-- '/ (11 T I 0) = v hI Bywy = (h2 I ByCy) '. 

It is interesting to compare (11) with the re­
duced probability of transition to the first rota­
tional level of the ground band 

B6'22 (E2) = B~g~2 (E2) itwy ICy. (12) 

For y -oscillation levels at the borders of the 
rare-earth group (isotopes of Sm, W, Os), llwy 
is on the order of 1 Mev, and Cy on the order of 
20 Mev, hence 

B<Yl (E2) I Bgr (E2) = 1l2o· (12a) 

2. CONNECTION BETWEEN C[3 AND Cy 

Let us consider in greater detail the problem of 
the averaging of the Hamiltonian (1) over the entire 
states of the nucleons. The Hamiltonian of the nu­
cleon in a deformed nucleus is of the form 

~ 2 ( 2 d2V dV) dV 
+ &t / dr2 + 4r {[( - p cosT' dr y 2o 

-i:rsinrr:~(Y22+ Y2.-2l· (13) 

The Hamiltonian of n nucleons contains, in ad­
dition to hp, also the energy of the residual inter­
action and therefore 

n 

f!nuc1= ~ Hp(i) + LJ wik· (14) 
i=! i<k 

It can be shown (see, for example, reference 3) 

that in the observed nuclear deformations the en­
ergy of the residual interaction W is no longer 
dependent on {3 and is constant. Let us average 
(13), choosing the solution for y = 0 as the zeroth 
approximation. The {3 -dependent portion of the 
nuclear energy will then be 
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n 

E (~) = W + ~ [ Cc + -fn )J ( Q£ I r2 ~~ + 4r ~I n£)] 
i=l 

n 

= W +-} C~p2 - ~ _ZJ ( Q£ I r ~~ Y 20 In). (15) 
l=l 

The equilibrium deformation {3 0 is determined, as 
usual, from the condition 

n 

dE "1.1/r.l dV I " lij" = C~~o- .~ "'-~•£ r dr Y20 .Qi/ = 0 
1=1 

(16) 

and, through the use of (16), E ({3) is represented 
by 

E (~) = E (~0 ) + 1/2 C~ (~- ~0 )2 • (15a) 

The portion of the energy that depends on y 
(for fixed {3 = {3 0 ), is, within accuracy to second­
order perturbation -theory terms, 

n 

E (&) =- ~0 cos I_L ( fr£ j r~~ Y20 In) --} ~~ sin2 & 
l=l 

·n 

x_~ LJ I ( .Qk I r ~~ (Y22 + Y2, -2) I.Qi) r I (Eok- En;). (17) 
1=1 k 

The summation over k is carried out over the un­
filled states. It is seen from (17) that the equilib­
rium value of y, determined from the condition 
dE/dy = 0, is zero, i.e., deformed even-even nu­
clei have an axially-sym:metrical equilibrium form. 

The parameter of the stability of the nucleus 
relative to y oscillations is 

n 

(d'E) . ~ / I dV I " Cy = dy2 y=o = ~o ~~1 "'-.Qi r dr y 2o .Qi / 

n 

- ~~ i~ ~ j( Qk I r ~~- (Y 22 

+ Y2, -2) fn)f2 I (Eok -Eo;), 

and, considering (16), we get 

n 

Cy=~~[c~-~~ 
i=1 h 

(18) 

Since the denominator in the sum contains the dif­
ference of energy levels for which we have no ac­
curate values, it is impossible in general to calcu­
late Cy and Cf3· However, if it is known that for 
a given nucleus there are no nearby levels, it is 
possible to use the calculations of Nilsson2 to ob­
tain a rough estimate of Cy. We thus obtain Cy 
= 24 Mev for W 182 and Cy = 27 Mev for W186• 

3. INTERACTION BETWEEN THE ROTATION 
AND THE OSCILLATIONS 

The correction to the energy of the rotational 
levels in the ground band, proportional to I2 (I+ 1 )2, 

is due to two causes: (1) y oscillations cause the 
shape of the nucleus to deviate from that of an 
axially-symmetrical top. (2) The moment of in­
ertia changes during {3 oscillations. 

The interaction between the rotation and the y 
oscillations is taken into account by operator U 
[Eq. (2d)), which is not diagonal in the I, h rep­
resentation. We then obtain in the second pertur­
bation -theory approximation 

f..Ey = __ I <1201/ 0 1 JOOO> )2 

1iwy 

=- ~(~)2/2(/ + 1)2-2/ (/ + 1) (20) 
6BY J (1iwy)2 • 

The portion of ~Ey that is proportional to I (I+ 1) 
can be included in the expression for the rotational 
energy in the zeroth zpproximation, since it leads 
to an insignificant change in the moment of inertia. 
The remaining portion will yield deviations from 
the E "' I (I+ 1) law, namely 

(21) 

In the model of a rotating liquid drop, J = 3By, 
and this leads to Bohr and Mottelson;s Eq. (6.35) 
of reference 4. 

t..Ey = - 2 (1i~YA~ yf3 (I + 1 )2. (21a) 

The correction due to the interaction with the {3 
oscillations can be determined by taking it into ac­
count that the moment of inertia is a function of {3. 

Expanding n2/2J in powers of f3to we obtain in 
the second approximation 

f..E~ = -2~fl (~;yf2(1 + 1)2. (22) 

The total correction to the energy of the levels of 
the principal rotational band will be 

[ 1 (1i2)2 1 (a Ji2 \2] 
f..E=f..Ey+f..E~=- 6CY 7 +2cfl af,2J) J2(1+1)2 

=-FJ2(1 + 1)2 • (23) 

F depends on the three parameters J, Cf3, and 
Cy as well as on the derivative (8/8{3)n2/2J. 
These parameters can be determined from Eqs. 
(7), (10), and (11). The derivative can then be de­
termined from (23). 
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4. ANALYSIS OF AVAILABLE EXPERIMENTAL 
DATA 

Tables I and II list the experimental data on the 
oscillational and rotational levels of nuclei near the 
rare-earth group. What is most striking in an ex­
amination of the {3 -oscillation levels is the strong 
dependence of the energies Ey of the y levels on 
the parameter {30 of the equilibrium deformation. 
At the borders deformed-nuclei regions Ey ~ 
600 kev (Os190 ); when the deformation increases, 
Ey rises rapidly, reaching 1220 kev for w182 and 
on the order of 2 Mev and above for Dy, Er, and 
Yd. It is quite possible that the Ey vs. {3 0 curve 
has a fine structure, so that all the isotopes of the 
given element fit .a separate curve (see diagram). 

Let us consider now the behavior of the deriva­
tive (a /8{3) ( n2 /2J), making use of the data of 
Tables I and II. 

We begin with the isotopes of tungsten, for 

which Cy have been measured by the Coulomb­
excitation method. Inserting in 

,:l2 __ 1 (a '/i2\2 1 r'li"\2 
B = CB ,a~ 2Y/ = 2 F- 3CY \J) (24) 

the values Cy = 21 Mev, li2/J = 33.6 kev, and 
F = 0.015 kev for W182 , we obtain 6.[3 = 0.110 

TABLE I. Oscillational levels in deformed 
even -even nuclei 

Y -oscillation levels, Y-oscillation levels, \ ,8-oscillation levels, 

(we shall call the quantity 6.{3 the "{3 -deform­
ability" of the nucleus). If we now assume Cy 
~ C[3f35 for W182, we get I ( B/8{3) li2/2J I = 65 kev. 
A similar value is obtained for the derivative if 
the moment of inertia depends linearly on {3. 

I= K = 2+ 

Isotope,! Energy, kev 

Sm'52 1086 I 
Gdl54 996.6 
Gd'•' 1160 
Dy''" 996 
Er166 786 
Er'"s 822 
WI•2 1222 
\v''•• I 890 
W"" I 730 
Os'"" I 7G4 I 

I=K=2+ I=K=O+ We now perform analogous calculations for 

Isotope I Energy, kev 

I 
0-'::>:M 633 
Os'"" 586 
Thz2s 964 
Thzao 1060? 
U'"z 868 
Pu23s 1030 
Puz•o 1020 
Crn246 1300 
CF'" 

I 
1200 

Fm2'' 4 700 

Isotope 

Sm152 
Gd'•• 

Er''" 
Th2'" 
u2a. 
Pu23s 
Pu2<o 

I Energy, 
kev 

685 
679 

1460? 
720 
805 
935 
940 

w 184 ' using the values Cy = 18 Mev' li2 I J = 30 kev' 
and F = 0.073 kev. It then follows from (24) that 
6.[3 = 0.31. The three-fold increase over the value 
for w182 can naturally not be attributed to a cor­
responding decrease in -J C{3 , for this would ne­
cessitate a ten-fold decrease in Cf3. On the other 
hand, the moments of inertia and the value of the 
parameter {3 0 for these two isotopes are the same, 
within the accuracy of measurement. To verify 
whether we deal, in the case of w184 , with fluctu-

TABLE II. Parameters {30, A, and F in the rare earth region. 
The parameters of equilibrium deformation have been experi­

mentally determined from the Coulomb excitation. The 
parameters A and F determine the energy of the 

rotation-band levels of the ground state: 
E = AI (I+ 1) - FI2 (I+ 1 )2 

Nucleus I {3, .A., kcv F, kcv 

Sm152 0.28 21.18 0.141 
Gdi54 0.30 21.34 (20.20±0.60) 0.139 (0.072 ±0.015) 
Gd156 0.41 15.02 (14.81±0.12) 0. 0324 (0 022 ±0. 003) 
GdJ.'B 0.46 13.2:') 0.0102 
Dy"" 0.35 14..');) 0.019 
Dy''" 0.36 13.55 (13.54±0.23) 0.0133(0.010 ±0.006) 
Er1" 6 0.33 13.63 0.0194 
Er''" 0.33 13.37 (13.48±0.05) 0.0060 (0.0110±0.0012) 
Yb 170 0.30 14.11 0.0110 
Yb172 (I 31 13.16 0.0076 
Hfl" (I 2!) 14.93 (14. 94±0 .O.'J) 0.0166 (0.0166±0.012) 
Hf 178 0.31 15.(i1 (1.1.64±0.14) 0.0132 (0.0132±0.0021) 
Hfl•o 0.27 15.60 (1:).54±0.08) (). 007!) (0. 0067 ±0. 001 3) 
WI82 0.26 16.78 0. 01.)6 
w1s< 0.21 16.78 0.0729 
Ostno 0.1!> 32.59 (:-lO.l±l, 1) 0.2G1 (0 12+0.03) 
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ations, we consider the behavior of the derivative 
in isotopes of Hf. The isotope Hf180 has the least 
value of F, namely 0.0067 kev. It is therefore 
reasonable to propose that, in the case of Hf180, 

the contribution to F from the {3 -deformability 
term is negligibly small. We then obtain from 
(24), by putting n2/2J = 15.54 kev, a value C.y = 
24 Mev. Comparing this value with Cy ( w184 ) = 
18 Mev and Cy (W182 ) = 21 Mev, we see that a 
value Cy ( Hf180 ) = 24 Mev is quite reasonable.* 
Quite reasonable, too, is the assumption that Cy 
cannot be less than 24 Mev in the case of Hf178 

and Hf176 • Then, according to (24), using the 
data of Tables I and II, we ~et 

{0.11 for Hf178, 

t.~ > 0.14 for Hf176 • 

If we take for Hf180 the same value for the {3 -
deformability parameter as for Hf178, Cy will 
be several times greater than that obtained. On 
the other hand, it is difficult to assume that Cy 
or ( 8/8{3) n2 /2J changes abruptly in going from 
one isotope to another. One can propose that such 
an abrupt change in F is due to violation of adia­
baticity for rotational levels. To check such an 
assumption, we calculated F first using data on 
two levels, and then from data on four levels (the 

*The reasonable value of Cy obtained for Hf180 indicates 
that the parameter referred to in the preceding footnote should 
be close to unity. 

values of F in parentheses in Table II). The good 
agreement between the results argues against the 
assumed violation of adiabaticity. One is left with 
the assumption that the rotational band is perturbed 
by single-particle levels that lie close to the oscil­
lational levels. Such a perturbation can be propor­
tional to I2 ( I+ 1 ) 2 and lead to differing increases 
in F for different isotopes, if the single-particle 
levels are different. So far there are no detailed 
information on the levels in the 1 to 2 Mev region, 
and therefore the latter assumption cannot be veri­
fied. 

It must be noted in conclusion that an experi­
mental investigation of the high levels of the Hf 
isotopes would yield new information on the char­
acter of the oscillations and rotation of nuclei. 
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