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The direct fission of a nonspherical nucleus, which occurs when the absorbed particle 
transfers a large amount of angular momentum to the nucleus, is considered. 

l. It is well known that the fission of stable nuclei The angular distribution of fission products in the 
under the action of fast particles is possible if the case of such a direct mechanism will have prop-
excitation energy of the compound nucleus formed erties characteristic of distributions pertaining 
in the process turns out to be larger than the crit- to direct processes. 
ical energy for fission. The critical energy for 2. First let us obtain the condition for the fis-
fission can be found from the conditions of unstable sion of a rotating nonspherical nucleus. For the 
equilibrium of a nucleus under the action of forces sake of simplicity we shall assume that the non-
of surface tension and forces of Coulomb repul- spherical nucleus has the shape of an elongated 
sion.1•2 However, in the case of nonspherical nu- ellipsoid of revolution. We denote the length of 
clei which have a rotational degree of freedom the semi -axes of the ellipsoid by a (axis of sym-
such a discussion turns out to be incomplete. metry) and b (a~ b). We denote the eccentric-

Indeed, since the moment of inertia of a non- ity of the ellipsoid by E: 

spherical nucleus differs from zero a collective 
rotation of the nucleus is possible. 3•4 This rota
tion leads to the appearance of centrifugal forces 
which in the case of sufficiently large angular 
momentum may lead to nuclear fission. The con
dition for fission of a rotating nonspherical nu
cleus may be obtained by investigating its stabil
ity under rotation with respect to small deforma
tions. The angular momentum of rotation which 
may lead to fission can be communicated to the 
nucleus by some fast particle absorbed by it if 
the impact parameter of this particle with respect 
to the center of the nucleus exceeds a certain crit
ical value. Indeed, as a result of the law of con
servation of angular momentum the mechanical 
angular momentum of .the absorbed particle is 
transferred to the nucleus, and such a transfer 
will be accompanied by fission as a result of the 
instability of the rotating nucleus with respect to 
small deformations. 

The fission of nonspherical nuclei arising as a 
result of the absorption of particles with large 
amounts of mechanical angular momentum will 
evidently occur without the intermediate stage. 
of a compound nucleus. Therefore the indicated 
fission mechanism for nonspherical nuclei may 
be regarded as a mechanism of direct fission.* 

*Pik-Pichak5 has investigated fission with formation of a 
rotating compound nucleus. 

s2 = 1 - b2 / a2. 

The total energy of the rotating nonspherical 
nucleus iE may be written in the form of a sum 
of the surface energy i£8 , the Coulomb energy 
6' q and the rotational energy 8 rot· 

The surface energy of the nucleus is equal to 

f&s =c 27t0ab {V 1- s2 ++arc sins}, (1) 

where 0 is the phenomenological surface tension 
coefficient. 

On the assumption that the electric charge is 
distributed in the nucleus with the constant density 
p = Ze/V the Coulomb energy of the nucleus may 
be written in the form 

1 ' 
8" =z-p ~cr(r)dV, 

where q; ( r) is the electrostatic potential inside 
the nucleus and the integration is taken over the 
volume of the nucleus. By utilizing for the elec
trostatic potential of a uniformly charged ellipsoid 
the expression6 · 

co 

(r) = -.:oab 2 r {' 1 - ~ - yz + z" l. . ds 
cp . ~ a' + s b' + s f v· a"+ s (b' + s) ' 

we will obtain the Coulomb energy of the nucleus 
in the form 

[g _ __i_ (Ze)2 In 1 + o 
q - 10 ao t- E • 

558 

(2) 
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The rotational energy of the nucleus is equal to 

Etrot = L2 / 2/, (3) 

where L is the angular momentum of rotation of 
the nucleus, I is the moment of inertia of the nu
cleus which depends on the eccentricity E. For a 
spherical nucleus the moment of inertia I must 
reduce to zero. Therefore the nucleus cannot be 
regarded as a solid. In order to determine the 
moment of inertia of the nucleus we can make use 
of the model of potential flow of an ideal fluid in
side a rotating nonspherical shell. 4• 7 In this case 
the moment of inertia will be determined by the 
following expression 

(4) 

where M is the mass of the nucleus and y is a 
numerical coefficient ( y ,...., 4), which must be in
troduced in order that for a given nuclear defor
mation E a value for the moment of inertia will 
be obtained which corresponds to experimental 
data. 

Let us consider infinitesimal deformations of 
the nucleus of the form a- a+ 6a, where 6a > 0. 
By assuming that nuclear matter is incompressible 
we obtain from the condition of constancy of nuclear 
volume during deformations ( V = const) 

b 3 1-e:2 

ob = - 2cl oa, 08 = 2 -ae:- ca. 

The total change in energy in the case of such 
a nuclear deformation is equal to 

(5) 

where 6 <t s and 6 <t q are the changes in the sur
face and in the Coulomb nuclear energies and 
6Etrot is the change in rotational energy due to a 
change in the moment of inertia of the nucleus as 
a result of deformation at a given angular momen
tum. 

o(g, = 1t0b {~++arcsine 

+ 3 1 --;_.,e:• [1/ 1- e2 - +arc sin s]}ca, 

c <tq = 1~ (~~;: { 1 - 3 -;e: e:• In : ~;} ca, 

[2 f 1 - e: 2 3 1 - e: 2 } 
o<t,ot =- Tci \1 + 3 -E:-.- + 2 2 -e:" oa. (6) 

Evidently the nucleus will be stable with respect 
to deformations of the form indicated above pro
vided 6 <t > 0. However, if 6 /5 :s 0 then the nucleus 
will be absolutely unstable, i.e., an arbitrarily 
small deformation will lead to nuclear fission. On 
substituting into the inequality 6Et :s 0 the expres
sions (6), and on solving this inequality with re-

spect to the square of the angular momentum L2, 

the condition for the fission of a rotating nucleus 
may be written in the form 

V> L';,, (7) 

where the critical value of the square of the angu
lar momentum is determined by the following ex
pression 

1 e:• (v- 1 \1 + 3 --=- 1 - s2 -- arc sine J. 
e2 e /, 

(8) 

From condition (7) it follows that a nonspherical 
nucleus cannot have an angular momentum greater 
than the critical value Lm· If a nonspherical nu
cleus is given an angular momentum exceeding the 
critical value Lm, then this will immediately lead 
to the fission of the nucleus. 

3. A nonspherical nucleus can acquire an amount 
of angular momentum which leads to fission by ab
sorbing a fast nucleon with sufficiently large impact 
parameter with respect to the center of the nucleus. 
Evidently the maximum value of the impact param
eter of the absorbed nucleus is equal to a; in this 
case the angular momentum communicated to the 
nucleus is equal to L = a,; 2mE , where m is the 
mass and E is the kinetic energy of the nucleon. 
By utilizing (8) one can find the critical value for 
the energy of the incident nucleon 

1 1 v-- {v-- 1 1-e:• Em= 8 --2 1-e2 Us 1- e2 +-arc sins+ 3--2 -
mro e: e 

x (V1-e2 -~arcsine) 

+ 12 Y~(i- 3 - e2 ln 1 +e) x} 
e: 2 6e: 1- E: 

Here 

ab2 = Ar~. Us= 47l'r~O, (Z2 I A)o = (407l' I 3) (r~O I e2), 

x = (Z2 I A)/ (Z2 I A)0 , 

A is the mass number. 
If the energy of the incident nucleon exceeds 

the critical value E ~ Em, then the absorption 
of the nucleon may be accompanied by direct fis
sion of the nonspherical nucleus. However, if 
E < Em, then fission is possible only with the 
formation of a compound nucleus. 

By setting r 0 = 1.4 x l.0-13 em, Us = 15 Mev, 
I== 2 x 10-47 g-cm2, a/b = 1.5 and x = 0.7 (the 
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nonspherical nucleus Hf180 ) we obtain for the crit
ical energy in the case of neutrons the value Em = 
20 Mev. (The value for Em obtained above is 
correct only in order of magnitude, since in the 
course of finding Em the expression (4) for the 
moment of inertia of the nucleus has been utilized. 
If the nucleus is regarded as a solid then we shall 
obtain for Em a value which is several times 
larger.) 

We note that the criterion E 2: Em for the pos
sibility of fission of a nonspherical nucleus under 
the action of particles of energy E holds only in 
the case when Em > ti2 /I. Indeed, if Em < ti2 /I, 
then even though the inequality E >Em is fulfilled, 
the condition E > ti2/I may not be fulfilled, which 
means that there is a possibility of the incident 
nucleon transferring energy to the rotational de
gree of freedom of the nucleus. Therefore the 
whole discussion is valid only for sufficiently large 
values of moments of inertia of nuclei. 

4. Let us find the cross section for the direct 
fission of nonspherical nuclei under the action of 
fast nucleons. For the sake of simplicity we shall 
consider the nucleus to be perfectly absorbing. 

We choose a system of coordinates in such a 
manner that the momentum of the incident nucleon 
p will be directed along the Y axis, while the axis 
of symmetry of the nucleus lies in the XY plane. 
Then the extent of the shadow of the nucleus on the 
plane perpendicular to the momentum will be de
fined by the ellipsoid with the semi -axes t ( e ) = 
a ..j 1- E2 cos2 e and b, where e is the angle 
between the momentum of the incident nucleon and 
the axis of symmetry of the nucleus. 

The angular momentum of the nucleon with re
spect to the axis perpendicular to the momentum 
of the nucleon and to the axis of symmetry will be 
given in the chosen system of coordinates by L = 
xp. When the nucleon is absorbed by the nucleus 
this angular momentum will be transferred to the 
nucleus. If L 2: Lm, i.e., x 2: Lm/p, then the 
absorption of the nucleon will be accompanied by 
direct fission of the nucleus. The cross section 
for such a process will evidently be equal to the 
area of the segments cut off from the shadow by 
the straight line x = + Lm /p: 

a ( E, 6) = 2bC (arc cos ~f - x; V I- ~;.) , 

(10) 

The cross section (10) corresponds to a definite 
orientation of the axis of symmetry of the nonspher
ical nucleus. In the case of nonoriented nonspher
ical nuclei the expression (10) should be averaged 

over all the possible orientations of the nuclear 
axis of symmetry. As a result of such averaging 
we obtain 

1) zabcv-{ A cr (E)= ~ ~ 1 - y 2 arc cos V 1 _ y' 
() 

V1-y'-A" }d 
-A 1 " y, -y 

(11) 

where A = Lm I ap = .J Em /E , while the upper 
limit for the integration TJ should be ta];{en equal 
to 

f8, 8<VI-A2, 

7i=\VI-A2 , 8>lfl-A2 • 
(11a) 

Expression (11) may be integrated in two limit
ing cases. Near the threshold the cross section 
for direct fission is equal to 

cr (E)= (ab / 48) (1 -Em/ £)2, E- Em <e:_E. (12) 

In the case of high energies of incident nucleons 
( E » Em) the cross section of direct fission co
incides with the total cross section for the absorp
tion of nucleons by a nonspherical nucleus 

7t ( - 1 \ cr = 2 ab V 1 -- 82 + 7 arc sin 8), E _--;-;;:,Em (13) 

Formula (11) determines the maximum possible 
value of the cross section. Actually the cross sec
tion for direct fission will be less than (11) as a 
result of competition of other processes both direct 
ones and also those with the formation of a com
pound nucleus. Qualitatively this may be taken into 
account by introducing into formula (11) a factor 
smaller than unity which describes the probability 
of direct interaction between the incident particle 
and the nucleus accompanied by transfer of a large 
amount of angular momentum to the whole nucleus. 

5. The study of direct fission of nonspherical 
nuclei in the case of deuteron stripping may be of 
particular interest. As a result of the law of con
servation of angular momentum the fission prod
ucts of a nonspherical nucleus will fly apart in the 
case of a direct fission process in the plane con
taining the direction of motion of the absorbed 
nucleon and the axis of symmetry of the nucleus. 
The other nucleon from the deuteron liberated as 
a result of stripping will also come out in the same 
plane. Thus, the direction of emission of the nu
cleon liberated during stripping and the direction 
of separation of the fission products of a ponspher
ical nucleus will be correlated. The establishing 
of such a correlation may be utilized for the sep
aration of the direct process from fission proces
ses with the formation of a compound nucleus. 

Let us determine the cross section for the 
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stripping reaction accompanied by direct fission 
of a nonspherical nucleus on the assumption that 
the deuteron radius is considerably smaller than 
the nuclear dimensions ( Rd « a and b ) . Under 
this assumption the total cross section for the 
stripping reaction is equal to the perimeter of 
the area of the nuclear shadow multiplied by one
quarter of the deuteron radius Rd. The cross sec
tion for the stripping reaction accompanied by di
rect fission will be proportional to the length of 
the arcs cut off by the straight lines x = + Lm /p 
from the ellipsoid which forms the boundary of 
the region of the nuclear shadow on the plane per
pendicular to the momentum of the incident deu
teron. By noting that the length of these arcs is 
equal to 

f ('" /-b") l = 4~ l E , 2 , J 1- ~ 

( -1 xm vr-b")t - E tan . V , 1-12 f 
b 1- x;, fC2 

(where E ( cp, k) is the elliptic integral of the 
second kind), and on averaging over different 
orientations of the nuclear axis of symmetry we 
shall obtain the following expression for the cross 
section for the stripping reaction accompanied by 
direct fission of a nonspherical nucleus 

a(£)= a~d ~V1- y2{£ (]-' {1- !=~.) 
0 

- E (tan - 1 A , , 
[(1-e:2)(1- y2 -A2) I (1- y2)] 1• 

(14) 

where E is half the energy of the incident deu
teron, while 11 is determined by (11a). 

Near the threshold of the stripping reaction ac
companied by fission the cross section is equal to 

r. 1- e2 ( Em\ 
a(£) = 4 aRd -e:- 1 -E) , E- Em 4;. E. (15) 

In the limiting case of high energies E » Em 
the cross section of the process under considera
tion coincides with the total cross section of the 
stripping reaction in the case of a nonspherical 
nucleus 

(16) 

Both in formulas (11) and (14) one should intro
duce a factor describing the probability of direct 
excitation of the fission degree of freedom of the 
nucleus. 

I express my gratitude to A. I. Akhiezer and 
K. A. Ter-Martirosyan for the discussion of the 
work, and to N. A. Khizhnyak for a useful remark. 
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