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The properties of detonation waves close to the normal detonation wave are considered. 
A theory is set up for the amplification of cylindrical converging detonation waves, which 
describes exactly the amplification in the initial stages of the process. By comparison 
with numerical calculations, it is shown that the theory remains satisfactory even for 
small radii and appreciable amplification of the wave. 

1. INTRODUCTION 

A converging detonation wave was first consid­
ered by L. D. Landau and K. P. Stanyukovich in 
1944 (this research was reported in the well­
known monograph of Stanyukovich, 1 pp. 567-574). 
The authors found the asymptotic law of the in­
crease in pressure for the approximation of a 
spherical wave at the center or for a cylindrical 
wave on the axis. If the adiabatic exponent is 
n = 3, the pressure in this case increases as 
r-1.13 in the spherical case and as r-0•47 in the 
cylindrical case. 

This research was noteworthy not only in its 
physical results but also in its methodology as an 
example of a power solution in which the exponent 
of the power was determined by the singular points 
of an ordinary differential equation and not by con­
siderations of dimensionality. In the case of an 
unrestricted increase in the pressure, it is pos­
sible to neglect the chemical energy of the explo­
sive material in comparison with the action of the 
pressure. Therefore, the theory developed by the 
authors is the same for converging detonation 
waves and for converging shock waves in a chem­
ically inert substance.* 

Neglect of the chemical energy is not only a 
consequence but also a premise of the theory: 
from dimensionality it follows that only in this 
approximation does the power solution satisfy the 
equations and we can go from the equation in par­
tial derivatives to ordinary differential equations. 
Neglect of the chemical energy, which is valid in 
the last stage of convergence, is quite unsuitable 
at the beginning of the detonation of the charge of 
explosive material: at the beginning of the process, 

*The work of Stanyukovich and Landau was completed in­
dependently of similar work by Guderleyl on the theory of 
converging shock waves in air. 

the pressure is entirely determined precisely by 
the chemical energy which is released upon the 
explosion. 

The purpose of the present research was the 
approximate (asymptotic) treatment of just this 
initial stage of the process of converg.ence of the 
detonation wave. At the starting moment, in the 
excitation of the explosion on the external surface 
of the sphere or cylinder, a normal detonation 
wave appears which does not differ from a plane 
detonation wave. The normal detonation wave is 
essentially different from a shock wave primarily 
because the amplitude of the detonation wave is de­
termined by the properties of the explosive sub­
stance and does not depend upon the method of 
generation, while the amplitude of the shock wave 
is entirely determined by the external action 
which the phenomenon of the shock wave brings 
about. 

This independence of the normal shock wave 
of the external reaction is associated with the fun­
damental properties of the state achieved in a det­
onation wave; these properties are considered in 
Sec. 2. 

Along with the convergence there begins an in­
crease in the pressure at the front of the wave and 
the normal detonation wave is replaced by the so­
called compressional detonation wave, in which 
the pressure is higher than the normal; the state 
in the compressional wave depends not only on 
the chemical energy but also on the state of the 
products of the explosion which are found at the 
front of the detonation. Experimentally, the ex­
istence of the compressional wave in gaseous 
detonation was first shown by B. V. A'lvazov and 
the author. 3 

The reasons for the increase in pressure is 
the center- (or axially) directed motion of the 
products of the explosion behind the detonation 
wave front: the products of the explosion move 
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in the direction of decreasing radius as though 
they were compressed and their compression is 
transferred to the wave front. In the limit of high 
pressure, the compressional detonation wave does 
not differ from a shock wave. However, we shall 
use the opposite limiting case, that is, we shall 
make use of the circumstance that at the beginning 
of the process the compressional wave differs 
slightly from the normal detonation wave. This 
circumstance, together with the fundamental prop­
erties of the normal detonation wave, allow us to 
develop a very effective approximate method of 
calculation of the pressure on the wave front, 
which is given in Sec. 3. This method is applic­
able, inasmuch as the amplitude is not too large; 
since the pressure in a cylindrical wave grows 
more slowly than in a spherical wave, the calcu­
lations are given for the cylindrical case where 
the range of applicability of the method is the 
greater. In Sec. 4 we give the numerical results 
of a calculation according to this method. 

Finally, in Sec. 5, we compare our approximate 
method with the results of the numerical solution 
of the partial differential equation. The region of 
applicability is shown to be greater and the accu­
racy better than could be expected a priori: differ­
ences in the pressure, velocity, density do not ex­
ceed 10 per cent for convergence of the wave up to 
a radius equal to 1/ 25 of the original, when the pres­
sure itself increases three times in comparison 
with the original. All the calculations are carried 
out for the simplest case of an equation of state 
with n = 3; however, in reality, the assumed ap­
proximate method is applicable for any equation 
of state for the products of the explosion, since 
it is based upon very general properties of the 
detonation wave. 

2. PROPERTIES OF A NORMAL DETONATION 
WAVE 

It is well-known that for a detonation wave of 
explosive materials, the equations for the conser­
vation of mass, momentum and energy can be sat­
isfied for any pressure exceeding the pressure 
which is developed in the chemical reaction in the 
material at rest. To each value of the pressure 
there corresponds the definite density (the cor­
responding line in the plane p, v = 1/ p is known 
as the Hugoniot adiabatic), a definite velocity of 
motion of the products of the explosion, etc. 

Of this series of states in the normal detona­
tion there exists only one completely determined 
state (the corresponding point on the Hugoniot 
adiabat is known as the Jouguets point4 ). The fun-

damental property of this state is the condition 

Do = Uo + C0 , (1) 

where D is the propagation velocity of the detona­
tion wave, u is the velocity of motion of the ma­
terial, c is the velocity of sound. The 0 indicates 
the quantities are evaluated at the Jouguets point. 

With the aid of thermodynamical relations, we 
can obtain the following properties of the Jouguets 
point and the properties of the Hugoniot adiabatic 
near the Jouguets point from Eq. (1): 

.(dD I dp)H. 0 = 0. (2) 

The symbol H indicates that the derivative is taken 
along the Hugoniot adiabatic, the 0 indicates the Jou­
guets point; at this point D has a minimum. Further, 

(dS I dp)H, 0 = 0. (3) 

In Eq. (3), S is the entropy of the products of the 
explosion; the entropy also has a minimum at the 
Jouguets point on the Hugoniot adiabatic. Finally, 

(dujdp)H,o= llpc. (4) 

This latter property will be resolved in Sec. 3. 
In the propagation of a plane detonation wave from 

the free boundary of explosive material there enters 
into the products of the explosion the so-called cen­
tral rarefaction wave, in which the pressure and all 
other quantities depend upon the ratio x/t, where 
x is the coorClinate measured from the original posi­
tion of the boundary of the explosive material, t 
is the time from the beginning of the detonation 
(A. A. Grib9, see also refs. 4, 5, and 13). 

At the coordinates x, t for which the charac­
teristics are determined, i.e., the lines on which 

~) dx / dt = u + c, ~) dx I dt = u- c, (5) 

the plane detonation wave corresponds to the pic­
ture of Fig.1: the a lines (solid) represent the 
set of straight lines diverging from the coordinate 
origin; the f3 lines (dash) are, in the general 
case the set of similar curves with the center of 
similarity at the origin of coordinates. In the 
special case where the adiabatic exponent is n = 3, 

t 

FIG. 1 

the f3 lines form a family of parallel straight 
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lines. This picture of the hydrodynamic dispersal 
of the explosive products behind the front of the 
detonation wave leads to the condition 

D>u+c 

for the detonation wave itself. 

(6) 

On the other hand, consideration of the chemi­
cal reaction of the conversion of the explosive ma­
terial to products of the explosion leads to the con­
dition 

(7) 

(this condition was first obtained in this manner 
by the authors 6 and later (independently) by 
Doring7 and von Neumann8; see also the researches 
of Grib9 and Abramovich and Vulis10 ) • In the ag­
gregate, (6) and (7) lead to the condition (1). 

In what follows we shall consider the width of 
the zone of the chemical reaction to be very 
small and shall use only condition (7), which does 
not depend upon the absolute value of the reaction 
rate and the width of the zone. The impulse of 
pressure which produces (initiating) the detona­
tion on the surface both above in the consideration 
of the non-trivial rarefaction wave and also below 
in Sec. 3, we shall consider small and shall not 
take into account. 

3. CONVERGING CYLINDRICAL WAVE, EQUA­
TIONS, AND PRINCIPLES OF ITS APPROXI­
MATE SOLUTION 

We consider the detonation and the movement 
of products of the explosion soon after the time 
when the detonation was initiated at the moment 
t = 0, simultaneously on both lateral surfaces 
of a long cylindrical charge, r = r 0• Initially, 
although, for the path described by the wave, 
Dt « r 0 , the process is evidently not different 
from the propagation of a plane wave and we 
shall deal with the normal detonation wave and 
a central rarefaction wave adjoining it (for fur­
ther details see Fig. 2). In comparison with Fig.1, 
the only purely formal difference lies in the fact 
that instead of x = 0 we must set r = r 0 and 
reverse the direction: the detonation is propagated 
inside, in the direction of the decreasing r. 

Along with the propagation of the detonation 
wave, a compressional wave develops; however, 
we limit ourselves to that region in which we 
can consider the wave as differing but slightly 
from the normal. Then, from the properties 
of ( 2 ) , we conclude that we can regard 

D = D0 = canst. 

It follows from the property ( 3 ) that 

(8) 

S = 50 = canst. 

Finally, we get from the property (4) that 
(on the wave front) 

p 
\" dp 

- u = - u0 + .\ Pc ; 
p, 

p p, 

~ dp ~ dp u+ -=uo+ -pc pc 

(9) 

(10) 

(with account of the fact that the wave now moves 
from right to left; we change the side of the velocity 
on the front u < 0 ) . 

We now consider the motion of explosion prod­
ucts behind the front and shall make clear in what 
manner the approximations (8) - (10) simplify the 
calculation of the process. 

The equations of motion, for cylindrical symme­
try, take the form 

du au au 1 ap dS as as 
& = at + u ar = --p-ar ; Tt = at + u ar = o; 

dp au ap p a 
dt =Pat+ uTt = --,-a,ru. (ll) 

We must add to these the thermodynamical equa­
tion of state p = p (p, s ). 

Since the entropy is conserved in each particle 
in the course of time, the entropy at the moment of 
completion of the chemical reaction in the approx­
imation considered is also the same, according to 
(3) and (9), consequently the entire motion as a 
whole is isentropic, S = S0 everywhere, and the 
pressure can be regarded as a function of the den­
sity alone. 

It is known that Eqs. (11) can be written in 
terms of characteristics 

da.l uc 
dt dx=(u+c) dt = - r ; d~ I uc 

dt dx=(U-c) dl = f ' 

where 

(11') 

doc= du + pic dp; d~ = du- pic dp. (12) 

Since the entropy is constant, we can then re­
gard p and c as functions of a single pressure, 
and introduce 

(' dp 
tfi = 'P (p) = fpc ; oc = u + q;; ~ = u- 'f· (13) 

it is appropriate to express all quantities in terms 
of a and {3. For this purpose we must transform 
the dependence of cp ( p). We obtain 

et+B ::t-8 
U -- --' . m --- --'- • 

- 2 ' T- 2 ' 

p = p ( tp); c = c (p) = c (a. -;/ ) . (14) 

For the known dependence of p ( p), the func­
tion c (a - {3) /2 is found to be elementary. As 
was noted by Stanyukovich, 11 an especially simple 
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dependence is obtained for p = const p3: in this 
case, 

g; = c; c = (rx- ~r/2; u + c =IX; u- c = ~· (15) 

This case will be considered below in concrete 
calculations; however, we can also make some 
steps toward a general form for arbitrary de­
pendence of c ( cp ) • 

The picture of the motion under consideration 
in the plane r, t is shown in Fig. 2. The broad 
line represents the front of the detonation wave; 
its equation is r = r 0 - Dt = r 0 - D0t in our approx­
imation ( D is the absolute value of the speed of 
the detonation). In comparison with Fig. 1, the 
roles of a- and /)-characteristics are reversed. 

r 

FIG. 2 

The thin solid lines in Fig. 2 are the /)-character­
istics ( dr /dt = u- c), while the dashed lines are 
the a-characteristics ( dr /dt = u + c); in the re­
gion around the point t = 0, r = r 0, the motion is 
not different from a plane wave; we have a central 
wave and from this point there go out the rays of 
the f3 -characteristics. The a -characteristics 
go out from the wave front. 

Equations (4) and (10) show that, close to the 
Jouguets point, when the wave has become com­
pressed, in our approximation, 

IX= u + ) dp / pc = const = IX0; (16) 

the invariant a remains constant on the wave 
front. 

As a consequence of the fact that the motion is 
not plane but axially symmetric, there is a right 
hand part to Eq. (11'), and along the a -lines, the 
value of a does not remain constant; also the 
value of f3 is not a constant along the f3 -charac­
teristic. Close to the front, I !31 increases with 
time, in accord with (11') (u < 0, f3 = u- cp < 0, 
df)/dt < 0); therefore the velocity of propagation 
of the f3 -characteristic increases, and the f3 -
lines, which were initially close to r 0 are propa­
gated somewhat more slowly than the detonation 
wave; they then overtake it as is shown in Fig. 2. 
The growth law of the amplitude of the detonation 
wave depends on the f3 -characteristics intersect­
ing it. We note that the fact of intersection is it-

self connected with the fact that for the compressed 
wave, D < I u I + c, which is quite permissible 
from the chemical point of view. Equation (1) which 
applies to the normal (non-compressional) wave 
cannot be differentiated along the Hugoniot adia­
batic. 

The value of f3 on the characteristic at the 
point of intersection of the f3 line with the front 
is determined by the previous motion of the prod­
uct of the explosion. The value of /), together with 
the equations of conservation (the Hugoniot adia­
batic), completely determines the parameters of 
the detonation wave. In this case, for I !31 >I 0 , 

we obtain a compressed detonation wave (the value 
of !30 corresponds to the Jouguets point). 

On the other hand the f3 line on which 
I !31 <I f3 o I does not overtake, and does not inter­
sect, the line on the detonation wave so that the 
states below the Jouguets point do not exist (for 
more details on this subject see reference 12). 

As is seen from Fig. 2, the pressure on the 
wave front of interest to us is entirely deter­
mined in the r, t plane by the motion in a nar­
row segment bounded on the left by a detonation 
wave emanating from the point t = 0, r 0 at the 
point B, and the right, by the f3- characteristic 
which joins these two points. The assumed ap­
proximation is that in this segment we have 

(17) 

As has already been pointed out, inside this seg­
ment, da/dt "'0 along the a -characteristic. 
However, a = a 0, da/dt = 0 along the detonation 
wave. 

Since the segment is narrow, then the value of 
a for a finite derivative changes only slightly in­
side the segment. 

For a given curvature of the f3 line, the width 
of the segment is proportional to ( r 0 - r )2, so 
that for small r 0 - r, for investigation of the ini­
tial period of convergence of a cylindrical wave, 
the assumption (17) appears asymptotically accu­
rate, the terms thrown away in this case being of 
much higher order in smallness of ( r 0 - r) in 
comparison with those retained. Actually, thanks 
to a favorable numerical factor, the approximation 
(1 7) is applicable in practice for any r. 

Because of (17), Eq. (11') for the f3 -character­
istics becomes an ordinary differential equation 
and is solved in elementary fashion. Actually, we 
can write it in the form 

d~ I d~ I uc 
dt dr~(u-c)dt = (u -c) dr dl=dr!(u-c) = r. (18) 

In this equation u and c ·can always be expressed 
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in terms of {3 and a. Moreover if, in accord with 
(17), a is constant, then we get 

d~ I dr = F (~. rt.o) I r; (19) 

The variables are separable and the equation can 
be integrated in elementary fashion. 

In integrating the equations, we must put in the 
initial conditions; a whole pencil of {3 -character­
istics emanate from the point r = r 0• We select 
one of these, giving the definite initial value {3 = {31, 

at the point r = r 0, t = 0. We shall take a 0 to be 
constant in what follows. 

Let us find r ( {3, {31 ) and then the equation of 
the {3 -characteristic in the plane r - t. Knowing 
the expressions u and c in terms of {3 (for a 
constant a= a 0 ), we write 1/(u-c) = 1/J(/3). 
Then 

dt 1 
{if= u=c = ~(~); 

dt = ~ (~) dr = ~ (~) dr (~~ ~,) d~. (20) 

Integrating the latter expression, we find t = 
t ( {3, f3t>. Thus the family of {3 characteristics 
is· given by two parameters: 

r = r (p, ~1 ); t = t (~. ~1). (21) 

Varying {31, we change from one characteristic to 
another; varying {3 for constant {31, we move 
along the characteristic. 

Now the amplitude of the detonation wave at a 
given radius r is found in simple manner: we sub­
stitute in (21) the value of r and the instant of 
time corresponding to it on the detonation wave, 
t = ( r 0 - r) /D0• Solving the two equations (21) for 
{31 and {3, we find the value of {3 on the wave 
front at the given radius. The value of {3, to­
gether with the Hugoniot equations, determine the 
amplitude of the wave. The numerical side of the 
work is given in the following section. 

On the theoretical side the treatment is con­
nected with the singular acoustical properties of 
the normal detonation wave: the characteristic 
bearing the corresponding value of {3 is such 
that ( I /31 < I {30 I ) does not reach the detonation 
wave and then the wave "yields" the value a= a 0 

and the entropy S = S0, which depend only on the 
properties of the explosion material. The charac­
teristic possessing such a {3 that I /31 > I {30 I, 
reaches the detonation wave, transforms the nor­
mal wave into a compressional wave. In principle 
now, a and S, created by the wave, depend on 
the incoming {3, but in first approximation (in 
the value of p -Po or {3- {30 ), the excitation car­
ried by the {3 characteristic is not reflected from 
it as though completely absorbed by the detonation 

wave. This leads to the fact that in first approxi­
mation the values of S and a going out from the 
surface of the detonation wave do not change with 
{3. In the following approximation it can be shown 
that S - s0 and a - a 0 are proportional to 
( {3- {30 ) 2, i.e., are of a higher order of smallness. 

4. NUMERICAL RESULTS OF THE APPROXI­
MATE METHOD 

Let us consider the case of the equation of state 

p=Ap3 , c=Vaplap=pV3A, rt.=u+c, ~=u-c. 

In this case, as is well-known, 11 

C0 = 314 Do, Uo = 114 Do, rt.o = 1l2 Do, ~o =-Do. (22) 

Here the initial density of the exploded material 
before the detonation is designated by p 00 , in con­
trast to Po - the density of the products of the ex­
plosion at the Jouguets point. The equation in 
characteristics (11') has the form 

d~ I d~ I a' _ 32 
dt dr{dl=~ = p dr dlfdr=W = ~ · (23) 

Substituting a = a 0 = constant and the initial 
conditions {3 = f3t> r = r 0, we find 

r = ro (~i- a~) I (~2 - rt.~), (24) 
r (~2 a2) 

t =- o "~ ~ o [;((p)- X(~,)], 
ao 

4a~p 6aor ' 31 ao + p 
X ~~ (p2- a~)" ~2- ag -t n ao- p . (25) 

After {3' ( r) on the front is found from (24), (25), 
and t = (r0 -r)/D, we find, within the framework 
of our approximation, 

u = (rt.o + W> I 2, c = (rt.o- W> I 2, 

p = const·c, p = const-c3 (26) 

(the numerical values of {3' /D0 and p' /p0 as 
functions of r /r0 are given in Table I) 

1 

r 
r, 

0.8 
0.6 
0.4 
0.2 
0.15 
0.10 
0.08 
0.06 
0.04 

I 
I 
I 
I 
: 

TABLE I 

~ I r 1-~ 
Po ! ru I Do 

I 
1.000 1.0001 0.02 1.908 
1.023 '1.047 0.01 2.238 
1.055 1.115 
1.108 1.230 
1.224 1.S·Ht 1.283 
1.376 
1.435 
1.516 

I 1.646 

However, the condition a = a 0 on the front of 
the compressed wave is only approximate; there-
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fore such p, p satisfy the conservation equations 
only with accuracy up to terms ( {3'- {30 ) 2• To ob­
tain internal consistency of the value u, p, p on 
the front, we must take the exact Hugoniot adia­
batic,find u(p), p(p), c(p), onit,construct 
{3 (p) = u (p)- c (p) (we remember that u < 0, 
{3 < 0 for the case of motion toward the center) 
and for a given {3' find p, p, u which satisfy 
the conservation equations exactly. 

At the radius 0.2, even if the calculation of {3' 
does not contain a large error, in each case it is 
no longer possible to make use of Eqs, ( 26) for 
the determination of u, c, p, p for a given {3' 
(see Sec. 5 ). 

For r/r0 close to unity at the beginning of 
the process, it is not difficult to obtain expansion 
of the solution in a series. We find 

Thus, the rate of growth of the pressure at the 
beginning of the process close to the free surface 
of the charge is approximately twice as slow as 
the asymptotic rate, close to the axis, found by 
Landau and Stanyukovich ( r - 0•188 instead of r - 0•47 ). 

In the solution of Landau and Stanyukovich, the 
pressure at each moment has a maximum at a cer­
tain distance from the surface of the detonation 
wave (Fig. 3a); it can be thought that this maxi­
mum passes on its excess pressure to the wave 
front and is the reason and the necessary condi­
tion for the growth of pressure on the wave front 
in connection with the propagation, 

plc_lh_ 
- rm r rS" r0 r 

a b 

FIG. 3 

In our solution, the pressure distribution at the 
beginning of propagation (Fig. 3b) differs but little 
from a plane wave; the pressure is maximum on 
the front and has a finite negative partial deriva­
tive with respect to the coordinates in the vicinity 
of the wave front. Nevertheless, as is seen from 
the result obtained above, the pressure on the 
front begins to increase rapidly along with the 
convergence of the wave, beginning with r = r 0, 

the increase is determined by the arrival at the 
front of the {3 -characteristics, which yield a 
value of {3 which increases in absolute magnitude; 
the quantity {3 depends not only on the pressure 

but also on the velocity of the material. Any es­
timate of the variation of the wave derived from 
a single distribution of pressure is invalid. 

5. EXTRAPOLATION OF THE SOLUTION AND 
THE EQUATION OF STATE 

It must be expected that the solution remains 
numerically satisfactory even there where it is 
impossible to consider the change of pressure on 
the front of the detonation wave ("compression") 
as small, and therefore the value of the entropy 
and the invariant a wil differ significantly from 
S0 and a 0 at the Jouguets point. 

The basis for such optimism lies in the fact 
that the approximation is contained in the replace­
ment of a by a 0 in the expression ( {32 - a 2 ) /ur. 
In this case, {32 is initially four times a 2 and 
then even greater; in such a case, a significant 
relative change of a changes {32 - a 2 but slightly. 

However, in the final stage of the calculation, 
in computing the pressure and other quantities 
corresponding to a given {3, it is no longer pos­
sible on the wave front to make use of the simple 
relations (26), which refer only to the vicinity of 
the Jouguets point. One must construct an exact 
adiabat. Here there arises a question on the equa­
tion of state of the products of the explosion. Fol­
lowing Landau and Stanyukovich, we have assumed 
p = Ap3, where the quantity A is easily found 
from the velocity of a normal detonation. 

Up to the present time, although isentropic 
processes of the expansion of the products of the 
explosion (slight supercompression) have been 
considered, nothing more has been required for 
the calculation of the hydrodynamic side of the 
problem, inasmuch as we are not especially in­
terested in the temperature of the explosion prod­
ucts. However, for strong supercompressions that 
reach (in the approximation of the wave ) to the 
axis of symmetry, is necessary for the hydrody­
namical calculation to know not only the pressure 
but also the energy of the explosion products, in 
their dependence on density and entropy. 

We can write the equation of state in the form 

E = 1/2A 0p2 + Etherm; p = Ao['3 + wEtherm p, (27) 

where A0p3 is the elastic pressure, A0p2/2 is 
the corresponding elastic energy; we can calculate 
these as well as the pressure and energy at abso­
lute zero. (Actually at absolute zero the pressure 
vanishes for a density Pc of the condensed prod­
ucts of the explosion (solid hydrocarbons, ice, 
etc.) which is close to 1 gm/gm3, and it would be 
more accurate to write p3 - p~ in place of p3• In­
asmuch as we are interested in densities of 2-3 
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gm/cm3 and higher, we do not need to consider 
this correction). The second term Etherm rep­
resents the thermal energy, w is a dimensionless 
constant. 

It follows from thermodynamics that 

iJE therm(P, S) p£ iJ In Etherm(P, S), (2S) 
Ptherm=- iJ(1/p) = therm iJlnp 

in which the meaning of the dimensionless constant 
w of (27) is determined. For a power-law depend­
ence of Etherm on p, w is constant. 

For ideal gasses and constant heat capacity, 
w = K -1 where K = cp/cv is the adiabatic expo­
nent. In our case, w cannot be constant. Here 
we shall not enter into the physical theory of w. 
In the consideration of the detonation, two limiting 
assumptions are possible, each of which simplifies 
the calculation considerably. 

The first assumption w = 0: 

E = A 0p2 12+ F (S); p = A 0p3 (29) 

correspo-nds to a representation of a purely elastic 
pressure. The elastic term in the energy A0p2/2 
corresponds to the elastic pressure; moreover, 
there is also a thermal term F ( S) in the energy; 
however the thermal pressure is equal to zero, 
since BF/Bp = 0. 

The second assumption, w = 2, leads to the 
equations 

E = A (S) p2 I 2; p = A (S) p3 = 2£p. (30) 

In this case there are elastic and thermal pres­
sures, but the value of w is specially chosen so 
that the adiabatics of the heated explosion products 
( S "' 0) have the same form functionally, A "' p3, 

as does the elastic pressure, p = A ( 0) p3• In this 
case, 

Etherm = 1l2 [A (S)- A (0)] p2; 

Ptherm = (A (S)- A (0)] P3 • (31) 

Estimates based on statistical mechanics show 
that the probable value of w lies between zero 
and 2, so that the actual results lie comewhere in 
the region between the two assumptions (29) and 
(30). 

It is easy for each case to construct the Hugo­
niot adiabatic of the detonation process. It is con­
venient to be given the magnitude of p; then, in the 
first case (29), 

p = A0p3; c = p V3Ao; U = - P (Ao (p- Poo) / PooY1•, 

D = P2 (Ao I Poo (p- Poo))'1•. (32) 

the sign of the velocity u corresponds to the mo­
tion of the detonation toward the center. 

From the energy equation we obtain 

F (S) = Q- Aop2 + Aop3 / 2p00 , (33) 

where Q is the chemical energy of the exploded 
material. 

The Jouguets point corresponds to Po= %Poo. 
all its properties are easily verified directly from 
Eqs. (32)- (33). Precisely in this case, the veloc­
ity of the normal detonation is directly proportional 
to the initial density 

16 -
Do = 9 Poo V3Ao. (34) 

D and Do do not depend on the chemical energy, 
only the entropy S depends upon Q. The regime 
is possible only for Q > 1%7 A0p~0 • In the compres­
sion wave, the density can increase without limit. 
With the aid of (32) we find {3 = u- c = {3 ( p). In 
the previous section, {3 ( r) was found (Table I). 
From this it is easy to find p (r) and p (r), i.e., 
to bring to conclusion the approximate solution of 
the problem of the pressure of a converging cylin­
drical detonation wave without assumptions on the 
smallness of the compression. The results are 
tabulated in Table II. The pressure is given in 
column 2 and is found from our approximate the­
ory. The pressure plotted in column 3 was found 
under the same assumptions on the equation of 
state by numerical integration in differences of 
the partial differential equations; integration was 
carried out with an electronic computer. 

TABLE II 

r '!._ 

I (~)exact r, Po 

1 2 I 3 

1 1 1 
0.8 1.05 1.05 
0.6 1.11 1.11 
0.4 1.23 1.24 
0.2 1.51 1.54 
0.15 1.67 1. 71 
0.1 1.94 2.01 
0.08 

I 
2.12 2.20 

0.06 2.40 2.49 
0.04 2.86 3.00 
0.02 3.96 4.18 

The limiting law for r- 0 was obtained in the 
following fashion: in accord with (24), for large {3, 

r ~ (~2 - IX~)- 2 ~ ~-4 ; ~ ~ r-'1•. 

On the other hand from (32) for large p and p, 

u~p'l•~yp; c~p~p'l•; u~c; ~=u~Vp. 

Hence 

(35) 

We now carry m~t a similar analysis of the sec­
ond assumption with regard to the equations of 
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state (30). In this case we must make direct use 
of all the conservation equations, eliminating the 
energy equation. We obtain 

P = 2PooPQ I (2Poo- p}; 

C= V3plp; U=-[p(p-~oo)IPooPJ' 1•; 

D = [pp I Poo (p- Poo)J'I., A (S) = 2pooQ / p2 (2Poo- p). (36) 

Again the Jouguets point corresponds to Po= 4p00 /3. 
The velocity of the normal detonation 

Do=4Q (37) 

does not depend upon the density as is the case for 
ideal gasses. Actually, tlie velocity of the detona­
tion of given explosive material with given Q in­
creases appreciably, although somewhat more 
slowly than p00 , ·with increase in the initial den­
sity; it is therefore evident that the second variant, 
Eq. (30) certainly does not exist in pure form, 
w < 2. On the other hand, w = 0 would denote the 
complete absence of thermal expansion, absence 
of the effect of temperature on pressure. In the 
same way, it is shown that (29) and (30) are actu­
ally limiting assumptions; the truth actually lies 
in between. 

Returning to the second variant [equation of 
state (30)), we note that, in accord with (36), the 
density in the compression wave never exceeds 
2Poo· Landau and Stanyukovich in the theory of 
a converging cylindrical detonation wave con­
sidered just this case. 

In the second variant, when the entropy is a 
variable, strictly speaking, the fundamental equa­
tion (11') also changes, and the very definition 
(3 = u- c becomes inaccurate, since the density p 
now depends not only on p but also on S. Neg­
lecting these corrections, we find the value of 
u - c from (36) in its dependence on p and with 
the help of the known (3' ( r) we finally obtain 
p ( r) as in the first variant. We have positive 
results in Table III. In column 2 are given the 

TABLE III 

T y_ (;,)exact r, p, 

1 2 3 

1 1 1 
0.8 1.05 1.05 
0.6 1.11 1.12 
0.4 1.23 1.25 
0.2 1,51 1.57 
0.15 1.67 1.76 
0.1 1.93 2.08 
0.08 2.10 2.30 
0.06 

I 
2.36 2.63 

0.04 2.93 3.21 
0.02 3.80 

results of the approximate calculation described 
above. In column 3 are given the results obtained 
on an electronic computer. 

The asymptote of the second variant does not 
differ from the asymptote of the first: p = r-1/2. 
It is significantly close to the result of Landau 
and Stanyukovich: p "' r-0 ~47 for this case. We 
note that the opposite limiting case of a cylindric 
acoustical (weak) case also yields p "' Po "' r - 1/2 

As a whole, as is seen from a comparison with 
numerical calculations and the asymptote, the re­
gion of applicability of the approximate theory is 
much broader than could be presumed previously. 

We note that it follows from the very nature of 
the derivations that the approximate theory gives 
only a description of the conditions on the wave 
front, but is neither intended nor suitable for a 
description of the motion of the entire mass of 
the explosion products. 
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