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ple considered here. We also note that the assumption that 
the heavy-particle temperature is stationary, necessary for 
the validity of the entire analysis (cf. reference 1), is 
always satisfied in a weakly ionized plasma. 
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IN the present note we wish to call attention to 
two facts which have not, so far as we know, been 
noted in the literature: the fact that the symmetry 
groups of the eigenfunctions of the Schrodinger 
equation are subgroups of the symmetry group GH 
of the corresponding Hamiltonian H, and the fact 
that the converse statement is not valid, i.e., the 
existence of subgroups of the group GH that are 
not symmetry groups of the eigenfunctions of the 
given Schrodinger equation. 

The first statement has been made by Melvin, 1 
who introduced the concept of the cokernel Kij of 
the i-th row of the j-th irreducible representa­
tion of the group GH, to which there correspond 
in the j-th irreducible representation matrices 
with all the elements in the i-th row equal to zero 
except for the diagonal element, which is unity. It 
is easy to see that the symmetry transformations 
occurring in the cokernel Kij leave the i-th func­
tion in the list of eigenfunctions l/Jtt zp2, ... ,l{Jz in­
variant, and that they form a subgroup of the group 
GH.1 Contrary to Melvin's statement, however, 

this still does not mean that the cokernel Kij is 
identical with the symmetry group of the functions 
l/Jio since it remains unproved that an eigenfunction ,. 
of the Hamiltonian H with the symmetry group GH 
cannot be invariant with respect to some symme­
try operator s which does not belong to the group 
GH. 

We shall prove this last assertion on the as­
sumption that the set ( L) of the nodal points of 
the eigenfunctions of the equation 

Hcjl = (T + V) cjJ = Ecjl, (1) 

has no internal points and that the value of the po­
tential at any point t of the configuration space 
can be represented as the limit of the values of 
the potential at a sequence of points tn that con­
verges to t, i.e., 

V (C) = lim V (C,.) for C,.--+ C. 

Suppose that s does not belong to Ga· We shall 
show that no eigenfunction of the operator H, 
which satisfies our assumptions, can be invariant 
with respect to the symmetry operation s. Let us 
assume the opposite, i.e., that there exists a func­
tion (whose set of nodal points has no internal 
points) for which sl{J = l{J. Then sHI{J = s (T + V) l{J 

A A A = Tsl{J + sVl{J = El{J and, on the other hand, Tsl{J + 
A A A A 

Vsl{J = Esl{J. Consequently sVI{J = Vsl{J = Vl{J, so·that 
sV = V at points where l{J ~ 0.* 

On our assumption about the set L of the nodal 
points, for any point t in L we can always find 
a set of points tn not belonging to L that con­
verge to t. Obviously l{J ( tn) ~ 0. Therefore 
from sV ( tn) 1/J ( tn) = V ( t"n) l{J ( t"n) it follows that 
sV ( t"n) = V ( t'n). Going to the limit, we get sV ( t) 
= V ( t), and consequently the equation sV = V is 
valid for every point of the configuration space, 
which contradicts the hypothesis of our argument. 

Thus on the assumptions indicated it has been 
shown that the symmetry groups of the eigenfunc­
tions of the Schrodinger equation are subgroues of 
the symmetry group GH of the Hamiltonian H, 
namely they are the corresponding cokernels. 

We shall show the incorrectness of the con­
verse statement for the example of a Hamiltonian 
with the symmetry group Csv. The group C6v has 
as one of its subgroups the group (E, ct). We 
shall show that this subgroup cannot be a cokernel 
of the group Csv· From the table of characters2 
of the group C6v it can be seen that the only sub­
groups that are cokernels corresponding to one­
dimensional representations are: for A1 ( Csv), 
for A2 (E, C2, ct, Cf), for B1 ( E, ct, O'd1, O'd2, 
O'd3 ), and for B (E, ct, av1• av2, av3 ). In the 
two-dimensional representation E1 there corre-
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spond to the elements Ca, independently of the 
choice of basis, matrices of the form 

which follows from the value of the character 
xEt ( ct) = -1 and the unitary nature of the mat­
rices; this means that these elements cannot occur 
in the cokernel of the representation E1• In the 
two-dimensional representation E2, with any basis, 
a unit matrix corresponds to the element C2• This 
follows from the value of the character xEz ( C2 ) 

= 2 and the fact that C~ = E. Consequently any 
cokernel corresponding to the representation E2 
will contain the element C2, and the subgroup 
( E, ct) cannot be identical with it. 

Thus the subgroup ( E, ct) cannot be a coker­
nel of the group C6v. i.e., cannot be a symmetry 
group of any of the solutions of the Schrodinger 
equation with a Hamiltobian of that symmetry. 

In conclusion we note that solutions of the Schro­
dinger equation that possess the full symmetry of 
the system of eigenfunctions (for the case of a 
finite number of particles see reference 3 ) have 
as their symmetry groups all possible cokernels 
of the symmetry group of the Hamiltonian. 

*Division by the function if; ~s possible because the effect 
of the potential energy operator V reduces to multiplication 
by the potential function V. 
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IN the analysis of the problem of the conservation 
of parity in individual interactions we shall start 
from the following postulates: (1) the law of con-

servation of the combined parity reflects funda­
mental properties of space-time and is the basic 
symmetry law in nature; (2) the conservation of 
spatial parity in individual interactions is a con­
sequence of additional invariance requirements. 

In fact, as has been shown in references 1-3, 
in the case of the renormalized quantum electro­
dynamics, owing to the gauge-invariance condition, 
the requirement of invariance with respect to the 
combined-inversion operation PC (or the time 
reversal T) leads to invariance with respect to 
the spatial-inversion operation P. In the case of 
the renormalized pseudoscalar meson theory, 
owing to the condition of isotopic invariance, the 
requirement of invariance with respect to the com­
bined-inversion transformation PC also leads to 
invariance with respect to the spatial-inversion 
operation P. The requirement of the invariance 
with respect to the transformation PC of the re­
normalized and isotopically invariant interaction 
Lagrangian of the K mesons and baryons does 
not lead to invariance with respect to the opera­
tion P. In this connection it is of interest to ex­
amine whether parity is conserved in processes 
of production of K mesons and hyperons. 

It is known that parity is conserved with great 
precision in nucleon-nucleon collisions and nuclear 
reactions. If there is no departure from isotopic 
invariance, then parity nonconservation in these 
processes can appear both as a consequence of 
the participation of virtual K mesons and hyper­
ons, and also owing to the nonrenormalizability 
( nonlocal character) of the interaction. As is 
shown by a calculation carried out in reference 5, 
the contribution of the K -meson forces to the 
nucleon -nucleon potential is small, so that the 
(very precise) parity conservation in nucleon­
nucleon interactions is not in contradiction with 
violation of parity conservation in interactions 
involving K mesons and hyperons.* 

Let us consider the process 1T + N - K + Y 
with the subsequent decay Y - N + 1T ( Y can be 
a A or a ~ hyperon). As has been shown in 
reference 4, if parity is not conserved in the pro­
duction of the K meson and hyperon, there is a 
longitudinal component of the polarization vector 
of the hyperon, and this leads to the appearance 
of an asymmetry in the distribution of the 1T me­
sons from the decay of the hyperons (in the center­
of-mass system), both relative to the plane perpen­
dicular to the plane of production and containing the 
direction of the initial 1T meson, and also relative 
to the plane perpendicular to the plane of produc­
tion and perpendicular to the direction of the initial 
1T meson. It is found4•5 that if there is a longitudi-


