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The elastic scattering phase shifts for Dirac particles are determined from the interaction 
potential with inclusion of the second approximation. The results of the Born approximation 
~d of damping theory, ~d also the McKinley-Feshbach formula, which is a generalization 
of the Rutherford-Mott formula, can be obtained as special cases. 

1. INTRODUCTION 

As is well lmown, in the theory of scattering one 
has the following exact formula for the ~gular dis
tribution of a beam of unpolarized Dirac particles 
scattered by a stationary center of force: 1 

da I dn =If (6) 12 +I g (9) 12; 

f (6) = 2:k ~ [(Z + I)(exp {2i3~1>}- I) 

+ l (exp {2io~2>} - I )J Pt(cos 6), 

g (6) = 2:k ~ [- exp {2ioP>} + exp {2io~2>}) P} (cos 6). 
1-1 

For the total effective cross-section we have: 

a=~:§ [(l + I)sin2 o?> + lsin2 o~2>]. 
1=0 

(1) 

(2) 

(3) 

In the general case of ~ arbitrary interaction 
potential no exact expression has been found for 
the ~gles op> ~d oi2>, which are the phase dif
ferences between the asymptotic expressions for 
the radial functions with the scattering center pres
ent ~d the radial functions of the free motion. 
There are various methods for the approximate 
calculation of the phase shifts 6~1 > ~d 6~2 >, in 
particular the Born approximation ~d the semi
~alytical method of Wentzel, Kramers, ~d 
Brillouin. Recently the phase shifts have been 
calculated by me~s of a damping theory. 2 In the 
present paper the phase shifts are calculated cor
rect to the second approximation in the interaction 
potential. We note that if we confine ourselves to 
just the first approximation we shall get again the 
results of the damping theory. 
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2. SOLUTION OF THE DIRAC EQUATION FOR 
THE FREE PARTICLE 

In studying the phase shifts for the elastic scat
tering of spinning particles it is convenient to take 
the solution of the free-particle Dirac equation 

(£- cp ·ar:- p3mc2) tjl(r) = 0, (4) 

without restriction by boundary conditions at infin
ity or at the origin, in the form: 

9(r)=~ 
I 

VI +ko/K{(L+ I)Azlh (kr) -tanW>nr(kr)J 

+ lBt [iz (kr)- tan o)2>nr(kr)])i1Pz(cos 6) 

VI + ko/K {At Ur (kr)- tan ol1>nr (kr)J 

- Bz[}t (kr)- tanll~2>n1 (kr)]}i 1e"'~' P} (cos 6) 

V 1- k0/K {lAz-1lit (kr)- tanll~~~ nt(kr)] 

+ (l + I)BtH Uz (kr)-tanll~~1 nz (kr)])i!Pz(cos 6) 

VI - ko/K {- At-l[jr(kr)- tan o1~1 nz (kr)) 

+ Br+dir (kr)- tan ll~~~ n1 (kr)]} i 1e"'~' P} (cos 6) 

(5) 

For op> = o!2> = 0 this solution describes a par
ticle with positive energy ~d its momentum ~d 
spin directed along the z axis. Here 

jr(kr) = (-rrf2kr)'I•Jr+•1,(kr); n1 (kr) = (-rr/2kr)'I•Nr+•t.(kr). 

The qu~tity lik is the momentum, E = cliK is 
the energy, ~d m = lik0 I c is the mass of the par
ticle. We note that, for Az = Bz = 1 ~d ol1). = 
o!2> = 0, Eq. (5) is the expression of a pl~e wave 
in spherical coordinates. 

The free-particle solution (5) is at the same 
time also ~ asymptotic expression for the solution 
of the Dirac equation in the presence of a spheri
cally symmetrical center of short-r~ge forces. 
In this case oi1> ~d o!2> are no longer arbitrary 
const~ts, ~d depend in a definite way on the form 
of the interaction potential. 
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3. APPROXIMATE SOLUTION OF THE DIRAC 
EQUATION FOR A PARTICLE IN A CENTRAL 
FIELD 

In scattering problems the most important case 
is that in which there is no vector potential and the 
scalar potential is spherically symmetrical. 

In this case it is convenient to consider instead 
of the Dirac equation 

(E -cp·~- p3mc2 - V (r))<jl(r) = 0 (6) 

the equivalent integral equation 

<jl(r)=rjl9(r) + D(r)~ G (r, r')V(r')<jl(r')dr', (7) 

where 

{J (r r') = _ _..!:.__ cos k Jr- r' j 
' 4" Jr - r' J ' 

(8) 

Furthermore for the zeroth approximation 1/Jo ( r) 
we take not a plane wave, but the solution (5) of the 
free-particle Dirac equation, with the condition 
oJ1> = o~2> = 0, which secures the finiteness of 
1/Jo ( r) at the origin: 

where for convenience we have introduced the no
tations 

IX= 1 + k0/K, ~ = 1-k0 jK. 

Assuming that the interaction energy can be re
garded as a perturbation, we car~y out a successive
approximation calculation to the second order. In 
this approximation the wave function has the form: 

<jl (r) = <Po (r) + <JI1 (r) + <JI2 (r) 

=<Po (r) + D (r) ~ G (r, r') V (r') <Po ~r') dr' 

+ D (r) ~ G (r, r') V (r')dr' D(r') ~ G (r', r") V (r") <jl0 (rw) dr". (11) 

By using the arbitrariness of Az and Bz, and 
also the choice of the Green's function (8), we try 
to identify the asymptotic form of the wave func
tion with the conditions at infinity, Eq. (5), in first 
and second approximations. In what follows we 
use the following expansion of the Green's function: 

i coskjr-r'l: 
4" Jr-r'J 

= 4~ ~ (21 + 1) G (r, r') { P1 (cos 8) P1 (cos 8') 
' ,_ 

+ 2 ~ ~:-:; :~: P'I' (cos 8) P'I' (cos 8') cos m (rp - rp')}, (12) 
m-1 

, jh (kr') nz (kr) for r > r', 
G (r, r) = 

iz (kr) n, (kr') for r < r'. 
Here r, B, cp and r', B', cp' respectively are the 
spherical coordinates for the position vectors r 
and r'. 

(a) First approximation. In the first approxi
mation 

<jl (r) =<Po (r) + <JI1 (r) 

= <jl0 (r) + D (r) ~ G (r ,•r') V (r') <jl0 (r')dr'. (13) 

By taking into account Eqs. (10), (12), and (13), and 
also the well known orthogonality and normaliza
tion relations of the Legendre polynomials, we can 
carry out the integration over the angles in 1/Jt ( r). 
This gives: 

A v« (Az- Bz) il<Dl (r)i'~' P} (cos 8) { 
V«[(l + 1) Az + lB, ]il<I>f (r)P1 (cos 8) 1 

<P1 (r)=kD(r) f V~[lA 1_ 1 + (l + 1) Br+1li 1<I>f(r)P,(cos8) 

V~(- Az-1 + Bt+1}i1<I>f(r)eicp P}(cos 8) 

(14) 
where we have used the notation: 

r 

<I>'I' (r) = n1(kr) ~ /rn(kr') V(r') r'2dr' 
0 

00 

+ jz (kr) ~ nrn (kr')jrn (kr')V(f') r'2dr'. (15) 

To get the final form of the wave function in first 
approximation, we must work out the application 
of the operator D ( r) in the expression (14); we 
find as the result 

kK ~ "o/1 (r) = ~ 4.1 
C-n I 

V«{(l +1) Az[a.<I>f(r) + ~<I>fH(r)J 

+ lBr fa.<I>l(r) + ~<I>f-1 (r))}jlPz (cos 0) 

V« {At [a.<I>f (r) + ~<t>l+\r)]-Bz. [a.<I>f (r) 

+ ~<I>l-1(r)]}ile''P P} (cos 8) 

V~ (lAz-1 [a.<I>l-1 (r) + ~<I>l (r)] 

+ (l+ 1)Bt+1[oc<I>l+V) + ~<I>l(r)]}i 1Pz(cos8y 

V- I 1 I 
~ {- Az-1 [a.<I>,- +~<I>, (r)J 

+ Bz+1 [oc<t>l+V)+ ~<I>l (r)l}i 1e'"' P} (cos 8) 

(16) 

In obtaining Eq. (16) from Eq. (14) we have used 
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the differential relations 

(PI + ip2) <t>i(r) Pz (cos 6) 

'tiki~ I 1 I 1 
i (21 + 1) [ <l>c-1 (r) Pc-1 (cos 6) + <l>z+I (r)Pc+1(cos6)] 

p3 <t>i (r) P z(cos 6) 

= i(2;~ 1 ) [l<t>L(r) Pc-1 (cos 6)- (l + 1 )<t>f+1 (r)P1+1(cos 8)], 

(PI- ip2) <t>l (r)P} (cos 6)e'~ 

ttk 1(1+1) I ( 6 
=-T""""2T-tt [<l>c-t(r)Pz-t cos ) 

+ <t>l+I(r) Pz+1 (cos 6)], 

p3<t>l (r)P} (cos 6) e'~ = i(;~~'~'i) [(l + 1 )<t>L1(r) P}_1 (cos 6) 

(17) 

which can easily be obtained by direct differentia
tion if one uses the connections between the suc
cessive Legendre polynomials that are well known 
from the theory of spherical harmonics. 

We note that in Eq. (16) only Legendre functions 
of order l appear; this formulation is obtained by 
replacements of the summation index l by l - 1 
and Z+l. 

Recalling the asymptotic behavior of the func
tion <I>fl" ( r ) for large r 

00 

<PI" (r)--+ n1 (kr) ~ j~ (kr')V (r') r'2dr', (18) 

and using Eqs. (10) and (16), we can easily write 
out the asymptotic expression for the first-approx
imation wave function If! ( r) = lf!o ( r) + lj!1 ( r). Iden
tifying this with the expression (5), we determine 
the following values for the scattering phase shifts: 

kK { 00 

tan '&~2 > = -eft ex.~ j~ (kr) V( r) r2dr 
0 

+~ r i~-dkr)V(r)r2dr}. (19) 

This same result is given also by the damping 
theory developed in the papers of reference 2. 
These papers contain a more detailed discussion 
of the results that follow from the formulas (19). 

(b) Second approximation. The exact calcula
tion of 

<f2 (r) = D(r) ~ G (r, r') V (r') tp1 (r') dr' (20) 

involves rather cumbersome manipulations. We 
shall be interested in only the asymptotic behavior 

of If! (r) = lf!o (r) + 1/!1 (r) + 1/!2 (r), which is enough 
for the calculation of the scattering phase shifts 
in second approximation. 

Substituting Eq. (16) in Eq. (20) and carrying 
out the angular integrations, we get by using Eq. 
(18) the asymptotic expression for lj!2 ( r) for 
r-oo: 

Voc [(l + 1 )A c8~2) 

+ lBz811>}i1n1(kr)P1 (cos 6) 

Va[A 18~2>- 818~1>1 i 1n1 (kr) e''~' P[ (cos 6) 

ljl2(r)~D(r)~ K:2 V~itAc-18~4> 
I Cn 

(21) 

where 
00 

s)l> = ~ jt(kr')[oc<t>i (r') + ~<t>l-\r')Jr' 2dr', 
() 

00 

8}2> = ~ it (kr') [oc<t>l (r') + ~<t>J+\r')] r' 2dr', 
0 

00 
8~3) = ~ it (kr')[oc<t>j+1(r') + ~<t>j (r')] r' 2dr', 

0 

00 
s)4> = ~ it (kr')[ oc<t>l-\r') + ~<t>j (r')J r' 2dr'. (22) 

Equation (21) does not differ in its structure from 
Eq. (14), since the relations (17) also hold for the 
function nz(kr). Therefore we omit the computa
tions and give the expressions for the phase shifts 
in second approximation: 

kK { oo 
tan 3}1> = - ( C1i) ex. ~ n (kr) v (r) r 2dr 

0 

2{ 00 
- ( ~~) oc2 ~ j 1 (kr) <t>i(r) V (r) r 2 dr 

0 

co 

+ 2oc~ ~ j 1 (kr) <t>j+l(r) V(r) r 2dr 
0 

+ ~2 r iz+I (kr) <t>l:l:~ (r) v (r) r 2dr } ' 
0 
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tan o)2> = - (~~){a. r j~ (kr) v (r) r 2dr 
0 

+ ~ r jL1 (kr) v (r) r2 dr} 
0 

(kK'2{ co - a) IX2 ~ h (kr) ct>~ (r) v (r) r 2 dr 
0 

co 

+ 2 a.~ ~ j 1 (kr) <t>~-1 (r) V (r) r 2dr 
0 

+ ~2 r h-dr) <i>~=Ur) V(r)r2dr}. (23) 
0 

From (23) we can obtain previous results as 
special cases. For example, neglecting the terms 
quadratic in V ( r ) , we get the results found from 
the damping theory for the scattering of Dirac par
ticles, Eq. (19). In the case of small values of the 
scattering phase shifts (tan 6 z ~ 6 z) we find the 
results of the first Born approximation (cf. refer
ence 3) 

o)l> = - (~~){a. r j7 (kr) v (r) r 2dr + ~ r j7+1 (kr)V (r) r 2dr}' 

o)2> = - ( ~~) {11 r j7 (kr) v (r) r 2dr + ~ r jL1 (kr) v (r) r 2dr}. 

The formulas in (23) can also be used to study the 
scattering by a center of Coulomb forces ( V ( r) = 
- Ze2/r ). In this case it must be noted that the in
tegrated values of the phase shifts diverge. Never
theless, we get correct results if in the formulas 
(2) we first carry out the summation over l, which 

gives the following values for the scattering ampli
tudes in second approximation: 

f (6) = (~) _!S_ ( 2cx --l- 2~ cos e ) 
c1i. 8k2 sin" (tJ; 2) ' sin• (6/2) 

( Ze 2 )2 1tK2 a:~ ( . e) + ct..-, 4k3 sin(6/2) 1 - sm 2 ' 

(S) =(~)_IS_ 4~ cos(tJ/2) 
g c1i. 8k" sin (tl/2) 

+ ( ~~2 r :~2 Cos~:/2) ( 1 - sin~) . 

From this we get for the differential cross section 
the well lmown formula which takes into account not 
only relativistic and spin effects but also terms of 
the second order in V ( r), which characterize the 
asymmetry of the scattering of electrons and posi
trons4 

da ( Ze2 )'1-v2 jc2 e [ v2 • e 
dn= 2mc• ~sec42 l-7stn22 

Z v r e2 
) • e (I . e '] + ot-1- sm- -Stn-1. 

c \ c1i. 2 2 J 

1 N. F. Mott and H. S. W. Massey, Theory of 
Atomic Collisions, Clarendon Press, Oxford, 1933. 

2 A. A. Sokolov and B. K. Kerimov, Nuovo ci
mento 5, 921 (1957). Sokolov, Kerimov, and Gu
seinov, Nucl. Phys. 5, 390 (1958). 

3 G. Parzen, Phys. Rev. 80, 261 (1950). 
4 W. A. McKinley, Jr. and H. Feshbach, Phys. 

Rev. 74, 1759 (1948). 

Translated by W. H. Furry 
98 


