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The stability of a homogeneous plasma sphere of infinite conductivity in an external quasi
stationary electromagnetic field is investigated by perturbation-theory methods. 

IN recent years a number of papers have appeared 
which consider the equilibrium states of an isolated 
plasma in an external electromagnetic field (cf. ref
erences 1 - 3). Equilibrium between the field and 
the bound plasma configuration obtains by virtue of 
equilibration of the electrodynamic and hydrostatic 
forces. The behavior of an equilibrium system of 
this type, in particular as it pertains to problems 
of stability, are of great interest. 4 The stability of 
a plasma is also of great interest in connection with 
methods of radiation acceleration of charged-par
ticle bunches. 5 

In the present work perturbation theory is used 
to investigate the stability of a conducting sphere 
comprising a completely ionized gas which is lo
cated in an external quasi-stationary field. 

It is assumed that the electrical conductivity of 
the plasma is infinite. The plasma sphere itself 
is considered a uniform adiabatic system which 
obeys the equation of state of an ideal gas and is 
characterized by one external parameter - the 
radiation pressure at the surface (gravitational 
forces are neglected). 

PLASMA SPHERE IN A UNIFORM FIELD 

For simplicity we first consider a gaseous 
sphere of infinite conductivity located in a quasi
stationary spatially unifor:Ql electromagnetic field; 
the field components are given functions of time: 

E = (£_.., Ey, Ez} = E0 {exp (in1e t), exp (in2, t), exp (i.Uae t)}, 

H = {H_.., Hu, Hz} 

= H 0 {exp (in1m t), exp (i.Q2m t), exp (i.Uam t)}, (1) 

where all frequencies Q differ from each other. 
The effective amplitude of this alternating ( rotat
ing) field is independent of direction; thus the 
mean pressure is uniform everywhere over the 
surface of the sphere and equilibrium obtains for 
the spherical shape. Obviously the field in (1) can 
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only be an approximation to any actual electromag
netic fields of this form and is actually a superpo
sition of standing or traveling waves which are 
polarized in various directions. Actually, if the 
dimensions of the bunch are small compared with 
the wavelength (quasi-stationary case) the in
homogeneity and wave properties of the field can 
be neglected in considering all problems except 
those which relate to the behavior of the bunch as 
a whole (these will be considered separately). 

The investigation of the stability of a plasma 
sphere in the field given by (1) is carried out by 
means of an energy approach. Since the quasi
stationary conditions are satisfied we can deter
mine the electromagnetic energy of a bunch in the 
external field (1) starting from well-known formu
las of electrostatics magneto statics.* An ideally. 
conducting plasma bunch which cannot be pene
trated by an alternating electromagnetic field 
( Eint = o, Bint = f.J., Hint= 0) may be considered 
phenomenologically as a body with infinite dielec
tric susceptibility E - co and zero magnetic per
meability f.J. = 0. Then the potential energy in the 
external field at any instant of time is given by 

U (t) = 8~ ~(Hint· H - Dint·, E) dv. (2) 

In Eq. (2) the integration is carried out over the 
volume of the bunch while the magnetic field 
Hint = -grad l/JNtt and the electric induction 

nint = - grad l/J~nt inside the bunch are found from 
the solutions of the Laplace equation 

f1o/m = 0, f1~e = 0 (3) 

for potentials which satisfy the boundary conditions 

cp~t = 4~xt, tV:xt == 0, 
iJ<ji':,.xtfiJn = 0, 8r¥1ntjiJn = iJrf'.xtfiJn (4) 

at the surface of the bunch. The basic problem 

*Our attention was directed to this fact by M. L. Levin. 
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now becomes the determination of the mean poten
tial energy of the bunch in a given external field as 
a function of the variables which characterize ar
bitrarily small deformation of the sphere. Let the 
surface be characterized by a function R ( J., cp) 
which characterizes the distance from the center 
of the sphere to a point on the surface given by the 
angles J. and cp in a spherical system of coordi
nates; the origin is taken at the center of the sphere. 
R ( J., cp) can be expanded in spherical functions: 

<X> l 

R (3-, q:) = R0 [ 1 + 2} 2} CXzm Yl' (3-, q:)], 
l=O m=-l 

The expansion coefficients azm are generalized 
coordinates; at any instant of time these -determine 
uniquely a definite arbitrary configuration of the 
surface of the bunch. In analyzing the motion in 
the neighborhood of the equilibrium configuration 
we limit ourselves to weak perturbations of the 
sphere, in which case azm « 1. 

In accordance with perturbation theory, the solu
tions of Eq. (3) which satisfy (4) at the boundary of 
the bunch are sought as a series in increasing pow
ers of the small deformation parameters azm· We 
limit ourselves to second-order perturbations and 
neglect intermediate contributions, giving only the 
final result. The time average of the electromag
netic potential energy of an infinitely conducting 
plasma bunch in a quasi-stationary external field 
(1) is given by the expression 

oo I 

+ '-' '\;1 3 N (21-1) {l-1) 
kJ kJ ~ lm 2 (2/ + 1) 
1=2m=-l 

X (1- 4 (l + 1) l E~ ] cx2 } , (5) 
3 l-1 H~ Zm 

where V0 = 411-R~/3 is the equilibrium volume of 
the bunch, Nzm is the index of the spherical func
tion Yfl( J., cp ). The summation in (5) starts with 
l = 2. When l = 0 only the volume of the sphere 
is changed and the deformation corresponding to 
l = 1 is associated with the displacement of the 
sphere as a whole, which makes no contribution 
to the energy in the case of a uniform field. 

Writing the deformation parameters azm in 
the form of functionals 

27t"' 

a.zm = Nl~ ~ ~ (R/Ro) Yf ~in 3- d3- dcp = N1~R0S~ RYfda, 
0 0 s 

where the integration is carried out over the sur
face of the bunch, we find the mean pressure as a 
variational derivative of the potential .energy: 

'8U 9H~ {( E~ 
p (3-, rp) = 8if = 32" 1- 2 H~ ) 

00 l 
"' ,, (21 -1)(1-1) + k.J k.J 21 + 1 
l=2m=-l 

X [ 1 _ i__ (l + 1) 1 E~ J \ 
3 1-1 H~ CXzmY'[' (3-, cp) J . (6) 

The term in Eq. (6) which is independent of de
formation is the constant electromagnetic pressure 

9H~ ( E~) 
p o = 32n 1 - 2 H2 ' 

0 

which is directed along the normal to the surface 
(inward or outward). Adding to Eq. (5) the expres
sion for potential energy corresponding to the work 
performed by the gas in the adiabatic process we 
obtain the t-otal potential energy of a uniform plas
ma bunch near equilibrium: 

-V 'v' 9H~ V {( E~) [ 1 Y (v -Vo\2] + w g = 32" o 1 - 2 H~ 1 + y- 1 + 2 -y;-) 
oo I 2 
,, ,, ~ N (21-1)(1-1) [ 4 (l + 1) 1 Eo J 2 } + 1~2 m::_l4" lm 2(21+1) 1-3 1-1 H~ a.lm ' (7) 

where 'Y = cp /cv is the ratio of the specific heats. 
An analysis of the last expression yields certain 
conclusions regarding the behavior of a conducting 
gaseous sphere in electromagnetic fields such as 
those described by Eq. (1). 

We first consider the effect of a uniform quasi
stationary magnetic field (a field of this type was 
used in the work reported by Knox3 ). In Eq. (7) 
we set E0 = 0, thereby obtaining a situation of 
minimum potential energy for V = V0; then all 
the azm = 0. Whence it follows that a spherical 
bunch of radius R0 is stable against an arbitrary 
small deformation. 

In the• case in which only an electric field oper
ates the surface of the sphere is subject to forces 
of negative electric pressure, Po< 0; thus a bunch 
in a void cannot be in equilibrium. 

In the general case of superposition of electric 
and magnetic fields a stable volume for a bunch in 
a void is possible only if the fixed radiation pres
sure is positive, P 0 > 0, i.e., the following rela
tion must be satisfied: H~ > 2E~. The nature of 
the stability with respect to various deformations 
is determined by the sign of the quantity 

_ 1 4 (l + 1) 1 E~ 
Tj- - 3 (1-1) H2' 

0 

which depends on the ratio of the electric and mag
netic field amplitudes and on the deformation index 
l. A bunch is stable against elementary deforma-
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tion characterized by the indices l and m if 
71 > 0 and is unstable if 71 < 0. In particular, in 
order for a spherical bunch to be stable against a 
simple ellipsoidal deformation6 ( l = 2) the in
equality H~ > BE~ must be satisfied (the same 
applies for l = 3 ). As the value of l increases, 
denoting more complicated deformations, there
lation between the electric and magnetic fields be
comes more stringent; when l » 1 this relation 
becomes H~ > 4E~l/3. Whence it follows that in 
the presence of an electric field an ideally con
ducting bunch can be stable only against deforma
tions which are characterized by a finite number 
of first surface harmonics satisfying the relation 

(8) 

The nature of the stability criterion (8) is in
timately related to the basic assumptions made at 
the beginning of this paper concerning the ideal 
electrical conductivity of the plasma. As applied 
to a real bunch this supposition is valid as long 
as the wavelength A.= 27TR0 /Z of the corres.pond
ing surface harmonics is much greater than the 
skin depth d. 

STABILITY IN A QUASI-UNIFORM FIELD 

Above we have investigated the stability of a 
plasma bunch in an idealized spatially uniform 
field (1). In treating actual cases we must take 
account of the small inhomogeneity in the external 
field. 

We consider a conducting plasma sphere in an 
external quasi-uniform field which may conveniently 
be written as follows: 

(1) Quasi-uniform electric field 

E, (r) = E0 + E11 (r), H, (r) = H1, (r); (9) 

(2) Quasi-uniform magnetic field 

Hm (r) = H0 + H1m (r), Em (r) = Elm (r), (10) 

where E0 and H0 are given by (1) as before and 
the small fields denoted by the subscript "1" are 
not considered in detail but merely characterize 
the small inhomogeneity of the applied field.. We 
now use Eqs. (9) and (10) in place of (1) in the orig
inal expression for the potential energy. Taking 
account of the small variation of the external field 
over the bunch, we obtain an approximate expres
sion for the mean potential energy in a quasi-uni
form field: 

V(r, V, ~> = U(r) + V(V, ~). 

where U ( V, a ) corresponds to the formula de
rived earlier (7), while 

- 3 
U (r) = I(f;" Vo [2 (H0·Hlm- 2E0•Ele) 

+(Hie- 2Eim) +(Him- 2Eie)lav 

depends on the position of the bunch as a whole in 
the quasi-uniform field ( r is the relative coordi
nate of the center of the bunch). The forces which 
act on a spherical bunch, at the center of which the 
amplitudes of the external fields reach their maxi
mum values E0 and H0, vanish when integrated 
over the volume; thus, the bunch as a whole is in 
a state of quilibrium in the inhomogeneous field. 
The nature of the stability is determined by the 
sign of U ( r) in the neighborhood of equilibrium. 

We may illustrate the application of this analy
sis by a simple example, using the superposition 
of six standing plane waves with different wave 
numbers k = fJ./c in an appropriate configuration. 
It is not difficult to show that in this quasi-uniform 
wave field 

- gH~ [( E~ k2 - k2 ) 2 U (r) = 32" Vo 2 2e 2m X 
Ho 

£2 ) (£2 J + (__.!! k2 _ k2 Y2 + --'.l. kz _ k2 } 22 
H~ ae am H~ 1e 1m, • 

where x, y, z denotes the departure of the center 
of the sphere from the location of the common anti
node of the standing waves. From this follows the 
stability criterion: 

H~j£~ < (kje/kjm) 2 , j = 1, 2, 3. (11) 

Comparing Eq. (11) with the criterion for internal 
stability of a highly conducting bunch ( d « R0) 
with respect to a change of volume and shape: 

H~/£~>4(1+ 1)1/3(1-1), 2~1<TCR0/2d, 

we see that these inequalities are incompatible with 
respect to field amplitudes. However, since the 
first relation involves amplitudes which are related 
to the wave properties of the fields while the second 
involves only quasi-static properties, over a wide 
region of wave numbers for which 

both inequalities can be satisfied simultaneously 
and a spherical bunch is characterized by stability 
with respect to all simple types of small perturba
tions of volume, shape, and position in an external 
field. 

Similar results can be obtained in fields which 
are more complicated than plane-wave fields; for 
example we may consider fields which are formed 
by an appropriate configuration of axially symmet
ric electric ahd magnetic waves. 

In conclusion we may point out that in a general 
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consideration of bunches of charged parM.cles one 
must inevitably encounter difficulties which stem 
from the fact that the system has a limited number 
of degrees of freedom. The rather crude phenom
enological model used in the present paper does, 
however, indicate the basic features of the behav
ior of plasma in quasi-stationary fields. 

Inasmuch as the purpose of the present note 
was to investigate the stability of a highly conduc
ting gaseous sphere in an external field we have 
limited ourselves to small deformation of the sur
face and have not considered transient effects. 

The author wishes to thank Prof. M. S. Rabino
vich for valuable discussions of this work. 
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