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The renormalization ofthe vertex part in pseudoscalar meson theory is investigated with 
the aid of the spectral representations of the vacuum average of the T -product of three 
Heisenberg operators proposed by Schwinger1 and by Gribov. 2 The problem of the magni
tude of the renormalization constants is discussed. An expression for Z1 in terms of the 
spectral functions is obtained and the relation between these spectral functions and the 
spectral functions in the Kallen-Lehmann representations for single particle Green's 
functions is established. 

l. The spectral representations for the Green's 
functions proposed by Schwinger1 and by the author2 

contain a number of the essential properties of 
these functions in a simple and clear form, and 
therefore they may turn out to be useful both for 
establishing different kinds of dispersion relations 
and for the further study of the structure of con
temporary theory. In spite of the fact that the 
derivation of these representations based only on 
the conditions of causality and on the structure of 
the spectrum of the system has met with serious 
objections (Kallen), the fact that they are valid 
in the case of perturbation theory suggests that 
they are.actually correct (a more detailed dis
cussion of this point will be given in a subsequent 
paper). However, it remains unclear as to what 
particular requirement must be imposed in order 
to limit the class of possible representations. One 
such requirement might be the requirement of re
normalizability of the theory. In this paper it is 
shown that the representations referred to above 
satisfy these requirements. 

With the aid of these representations it is pos
sible to discuss in a simple way the problem of 
the magnitude of the renormalization constants, 
to obtain an expression for the constant Z1 in 
terms of the spectral functions, and to establish 
the relation of these spectral functions with the 
spectral functions in the Kallen-Lehmann repre
sentation for the single particle Green's functions. 

2. We start from the following relation which 
is obtained by simple differentiation taking into 
account the renormalized field equations and the 
commutation relations: 
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x < 0 I T~ (xt) cp;(x2) 4 (x2) I 0) ( I• a: - m) 
3• 

= ( 0 I Tu(xt) j;(x2)u(xa) I 0/ + gZlz2-1 Za-I'ttls o (xi- x2) 

X (OITcp(xt)~{xa)IO;;(I• a!.- m) 
- gZlz2-Iza-I (l~.ojoxi'J.. + m). 

X ( 0! T ~ (x1)~ (x3) I 0) -r:; Is o (x;- x3) 

+ gZ~Z2 -2 1s -r:; (D2- [J.2) ( 0 IT cpi (xi) -:p; (x2) I 0 i 

- 2ig Is -r:i Z1Z2- 2 z-~o (x1 - x 2) ll (x2 - x3); 

u (x) =(IlL a;axiL + m) ~ (x); ji (x) = (0- [1.2) 'fi (x). (1) 

In the momentum representation this relation 
has the form: 

ig(i'Pt+m)G(pt)-r:;f5 (Pt,k, Pa) 

X G (Pa) (i p3 + m) (k2 + (L2) A (k2) = T, ('fJI, k, p8) 

+ ig Z1Z2-I zs-1 1s·-r:; G (Pa)(iPa + m) + ig Z1Z2- 1 Z3- 1 

X UPt + m) G (Pth; -r:, + ig Z1Z2- 21a -r:,(k2 + (L2) A (k2) 

P1 +k-pa = 0; (2) 

G ( p) and .6. ( k2 ) are the renormalized Green's 
functions; T ( Pt> kt> p3 ) is the Fourier compo
nent of the vacuum average of the T -product of 
the operators u ( x1 ) h ( x2 ) u ( x3 ) • In reference 2 
the following expression was obtained for this 
quantity 
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T;(J!I, k, Ps) 

co 1 1 1 

= i•'(5 'ti ~ dx12 dx22 dx32 ~ ~ ~ d«d~dj o (« + ~ + 1- 1) 
0 0 0 0 

222 AA 222 A A 222 X { fo(x1, x2,Ka)+(YP1+aps) f1 (x1, x2, Ks) + ~ (Pl + Pa)f.(x1, X2, x3) 

p~ ~y + k2ay + Pi a~ + ax~ + ~x~ + yxi- is 

(~f2i) (pl. Ps) fs (xi, x~. xi) \ 

Pi ~y + k2ay + Pi a~ + ax~ + ~x~ + yxi- ie j. 
(3) 

Here a small change in notation has been intro
duced, and an error made in reference 2 has been 
corrected. fi ( Kf, K~, K~) are real functions sym
metric with respect to an interchange of Kf and 
K~, equal to zero if K1 + K2 < m + J1. or K2 + K3 < 
m + J.L, or K1 + K3 < 3 J.L. The integral over Kf, K~, 
and Ki in (3) may be either convergent or diverg
ent depending on whether the combinations of the 
renormalization constants appearing in (2) are 
finite or infinite, but the functions fi ( Kf, K~, K~) 
are necessarily finite. This follows from the fact 
that (cf. reference 2) they are simply related to 
the Fourier-component Puju ( p1, p3 ) of the unor
dered product of the operators u ( x1 ), ji ( x2 ), 

u ( x3 ). The latter differs from the Fourier com
ponent Plf!cplfi (Pi> p3 ) of the average product of the 
operators If! ( Xt ) , cp i ( x2 ), Iii ( x3 ), which is finite, 
only by the factor 

= (ip1 + m)p<l>'P;j;(PI> Pa) (ipa + m) [(p1- Pa)2 + [J-2]. (4) 

If the normalizing constants are finite then the 
integral (3) must be convergent. From its con
vergence it follows (cf. the analogous discussion 
in reference 3) that, for example, for p1 = im, 
p3 = im and k2 - oo, Ti(im, k2, im)- 0. We 
then obtain under the conditions stated above 

fs(im, k2 , im)~l5z1z2-1 (2-z2-1 ). (5) 

Having this asymptotic expression for r 5, it is 
easy to show by utilizing the Kallen-Lehmann ex
pression for Z31, that Z31 - oo. This represents 
the substance of Kallen's proof3 that one of the re
normalization constants is infinite. We shall not 
discuss the special case Z21 = 2 (cf. reference 3). 

If the renormalization constants themselves are 
infinite, but their combinations appearing in (2) are 
finite, then, since in this case !::::.. ( k2 ) falls off 
slower than 1/k2, we can neglect all the terms in 
(2) with the exception of the penultimate one, and 
obtain: 

(6) 

and, similarly, 

But, as has been shown by Lehmann, Symanzik, 
and Zimmerman,4 in a consistent theory 

(6a) 

r5(im, k2, im)-0, r5(p, -J.L2, im)-0 and, 
consequently, Z1Z22 = 0, Z1Z21Z31 = 0. But in 
this case those terms of the field equations which 
describe the interaction are equal to zero. There
fore, such a case is not very probable. On the 
other hand that case is most probable when the 
combinations of the constants appearing in (2) are 
infinite. In this case the integral (3) must diverge, 
and it is necessary to obtain a finite expression 
for the vertex part. To do this we first determine 
the constant Z1 in terms of the functions 
fi ( KL Kt K~). We define Z1 by the condition 

(7) 

This condition corresponds to the determination of 
the coupling constant by means of the dispersion 
relations. The fact that the conditions p1 = p3 = im, 
k2 = - J.L2 cannot be satisfied for real momenta does 
not lead to any difficulties since we have an explic
itly analytic expression for T i ( p1, k2 , p3 ). 

It follows from (7) that 

T;(im, - [J-2 , im) 

= ig 15 -r; [1- 2Z1 Z2-1 Za -1- Z1 z2-2 + 2Z1 Z2- 2 Z3- 1]. (8) 

By utilizing this relation we can write the right 
hand side of (2) in the form: 

T~(h, k2 , l'a) + ig Z1z2-1Za-1i 6 -ri[(i}h + m) G (h)- 11 
+ig Z1 z2-1 Za-11 G (Ps) (iPa + m)- 111. -r; 

+ ig z1 Z2 -21• "i [(k2 + p.2) 1:1 (k2)- 11 + ig 15 -r;. 

T~(P1• k2 , Pa) = T;(PI> k2 , Pa)- Ti(im, -[1-2 , im). (9) 

However, Ti is not yet, generally speaking, a 
convergent expression, since the subtraction of 
Ti (im, -J.L2, im) does not yet regularize even 
the first term in the integral of (3) . Indeed, let us 
consider this first term in Tf, which contains the 
function f0 ( Kf, K~, K~). It has the form: 

(" dx2 dK2 dx2 f (x2 x2 x2) (' d« d!J. d..,. j 1 2 3 0 1' 2' 3 J t' I 

8 (a+~+ y -1) [ex~ (p; + m2) + cxy (k2 + !-'2) + ~Y (Pi+ m2)) 

x--~~~~~--~~------------~--~---
[cx~pi + ~YPi + cxyk2 + x2 ] [- cx~m2 - cxw•- ~ym2 + x2 ] 

· x2 = «Ki + ~x: + 1x; . (10) 

At first sight it might appear that the integral (10) 
cannot be divergent, since if the integral diverges 
then only large values of K~, K~ and K~ are of 
importance in it, and the terms containing pf, Pi. 
and k2 in the denominator may be neglected. Then 
the infinite part of this integral must be of the form 

A1 (Pi + m2) + A2 (k2 + 1.1.2 ) + .4 3 (p; + m2), (11) 
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where Ato A2, and A3 are infinite. But these 
terms could not cancel against other infinite terms 
in (9) since ~(k2 ), G(pd, and G(p3 ) fall off 
for large momenta. However, this conclusion is 
not correct since, for example, for large value,s 
of K~ in the integral over {3 the region of small 
{3"' 1/K~ is important. In this region the denomi
nators are not large. But the size of the region is 
of order 1/ K~, so that the whole integral over {3 

behaves like 1/ K~ for large values of K~. It is 
also important that for {3 "' 1/ K~ the integrand in 
(10) becomes dependent only on the momentum k2• 

However, from these arguments it follows that 
the divergence of the integral (10) may be due only 
to regions of correspondingly small {3, a, and y 
and that in order to regularize it, it is sufficient to 
subtract from the integrand its limiting values in 
these regions, viz. to subtract from the integrand 
the expression 

IX~ (p~ + m2) 

(IX~Pi + x2) (-1X~m2 + x2) 

IXY (k' + !J-2) ~y (p~ + m2 ) 

+ (1Xyk" + x•) ( -IXY~J-" + x"J + (~YPi + x2) (-;- ~ym2 + x") (12) 

After this subtraction the integral (10) will be con
vergent, and it now remains only to discuss the di
vergences produced by the integration of expression 
(12). Since each of the terms of (12) depends on 
only one of the momenta there exists a possibility 
for its infinite parts to cancel against the infinite 
parts contained in the remaining terms of (9). 

If we believe in the renormalizability of the 
theory, then we must conclude that such a cancella
tion does indeed take place. In principle we could 
terminate at this point our investigation of the rep
resentation (10), since after subtraction we obtain 
a representation of the contribution to the vertex 
part made by f0 ( Kt K~, • K~) in the form of a con
vergent integral, plus finite terms which have the 
same analytic properties as the original integral. 
However, it is of interest to establish the require
ments which are imposed on the function 
f0 ( K~, K~, K~) by the condition of renormalizability. 

3. We consider the second term in (12) and 
carry out the integration over {3 and y. We ob
tain 

1 

\ dx2 dx2 dx~ f ( ;c2 x2 x•) \ (I - IX) diX 
j 1 2 a o 1' 2' 3 j x2 (1 _ IX) + x2 IX 

0 2 1 

{ 
xi IX + x; (1 -IX) + IX (1 -IX) k2 

X In 2 2 
x1 IX + x3 (1 - IX)- IX (1 - IX) !J-2 

+terms of order x;;-4 In x~} . (13) 

This integral diverges when the integration over 
K~ is carried out. This means that f0 ( Kt K~, K~) 
does not fall off sufficiently rapidly as K~ - oo. 

However, it cannot increase faster than K2q, where 
q < 1, since in this case the integral (10) would di
verge when the integration over K~ is carried out 
not only for small values of {3, and this would con
tradict the previous conclusions. 

For the sake of simplicity we consider the case 
f ( 2 2 2) ( 2 2) 2 It · · O Kto K2, K3 _.. cp 0 Kt> K3 as K2 _.. oo. lS Sim-

ple to make generalizations to other possible cases. 
We consider that the integral containing fo (K~, K~, K~) 
- cp 0 ( K~, K~ ) in place of f0 ( Kt K~, K~) converges. 
Then after integrating over K~, and after introduc
ing the cut-off limit A., we shall obtain for the di
vergent part (13) the following expression: 

( dx2 \ dx2 m (x2 x2) J 1 j 3 TO 1' 3 

x ln ln --- d<X. (14) ~ IXxi + (1- IX) X~+ IX (1-IX) k2 ( A 1- IX) 

IXxi + (1-IX) y~ -IX (1-IX) f' 2 x; IX 

In order that the infinite part of (14) should cancel 
against the fourth term in (9), it is necessary to 
have 

1 
( ( IXxi + (1- IX) x~ + IX (1- IX) k2 

.) dxi dx~ cp0 (x~, x~) .) d<X ln ' 
0 IXXi + (1- IX) x; -- IX (1- IX) f' 2 

(15) 

where C is a finite constant. 
In order that (15) should hold it is necessary, 

. first, that its left hand side should increase slower 
than the first power of k2• If cp ( K~, K~) is such 
that this holds, then by equating the imaginary parts 
on the right and on the left hand sides we easily ob
tain the relation between the function cp 0 ( Ki, Ki) 
and the function K ( a2) in the Kallen-Lehmann 
representation for ~ ( k2 ) • If 

00 

2 _ 1 \ cr (x2) dx2 

t. (k ) - k• + 1'-2 + j k" + x2 - io ' 
9;.<' 

then after integration over 01 we get from (15) 
C (x2 - p.2 ) cr (x2) 

= :. ~dxidx~&(x-x1 -x3)S(x, x1 , xa)cp0 (xi, x;),(16) 

where 

&(x) = I for x> 0 and &(x) = 0 for x< 0. (17) 

We note that formula (16) is self consistent in the 
sense that in virtue of the condition f0 ( K~, K~, K~) 
== 0 for K1 + K3 < 311. the right hand side differs 
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from zero only for K2 > 9 iJ. 2• 

To obtain a similar relation between fi ( KL K~, K~) 
and the spectral functions in the representation for 
G (p) it is necessary to investigate the remaining 
terms in (3) containing f1, f2, and f3• These 
terms cannot give a contribution to (16) since they 
depend on the Dirac matrices, but they can give a 
contribution to the relation for G ( p). 

Actually it is easy to see, by taking into account 
the fact that each of the infinite terms in (9) depends 
on only one of the momenta and increases slower 
than Pt. p3, and k2, that the integrals containing 
f2 and f3 cannot diverge at all, while the integral 
containing f1 can diverge only as a result of inte
gration over Ki, or over K ~. We write out the con
tribution to Ti ( p1, k2, p3 ) of the terms containing 
f1 in a more detailed manner. It has the form: 

~ drtd~dy8(rt + ~ + y-1) 

x{ll(i P1 + m)+ 01:(i P3+m)] x2 +m (01:+1) (01:~p~ + 01:1k2 + ~~p~) 

- (01:~m2 + rL1fL2 +~1m2) (i01:p3 + i1fi t)}· (18) 

Owing to the presence of K2 in the numerator 

the regions of small values of a, y and of the 
values of a, y of order of magnitude of unity give 
contributions, generally speaking, of the same order 
of magnitude to the divergent part of Ti (Pt. k2, p3). 

However, the contribution from the region in which 
a, y are of the order of magnitude of unity behaves 
for large p1 or p3 as the first power of p1 or p3, 

and consequently cannot cancel against the remain
ing terms of (9) due to the falling off of G ( p) for 
large values of p. Therefore the function 
f1 ( K~, K~, K~) must have such properties that the 
contribution of this region to the divergent part will 
be equal to zero. If again we make the simplest as
sumption that as K~ - oo f0 ( Kf, K~, K~) - cp 0 ( K~ K~ ). 

while f1 ( K~, 4 K~) - cp 1 ( K~, K~), then the diverg
ent part of Ti ( Pt> k2, p3 ) which must cancel the 
second term in (9) may be written in the form 

Carrying out the integration in (19) first over a, 
{3 and then over K~ with the cut-off limit A., we 
shall obtain for its infinite part the expression: 

[ 1 m'ln (x~ (1- y) + x~ y- m2y (1- y)) + p~ In (x~ (1- y) + x~ y + p~ y (1- y)) ]} 
X -ln2 A.(l-1)- ·Int.. 

2 ~+~ 
(20) 

The condition given above for the slowness of 
increase for, large values of p1 leads to the re
quirement 

(' dx2 dx2 m1 (x2 x2) = 0 
~ 2 3 T 2' 3 ' 

(21) 

When (21) holds it is easy to obtain the relation 
between cp 0 ( K~, K§) and cp 1 ( K~, K§) and the func
tions 0'1 ( K2 ) and 0'2 ( K2 ) in the representation for 
G(p). If 

00 

G (p) = -ip.,---, +-m- + ~ 
(m+~-L)' 

(22) 

then 

(24) 

These relations are also self consistent in the 
sense that the right hand side differs from zero 
only for K2 > (m+ J.!)2, 

In conclusion I would like to express my thanks 
to I. T. Dyatlov for an exceedingly useful discus
sion. 
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