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Explicit formulas are obtained for the polarization of B particles and the B-y correlation
for first-forbidden transitions of oriented nuclei. All five types of B interaction are con-
sidered, and nonconservation of parity is taken into account. Effects of the Coulomb field
of the extended nucleus are included. Unoriented nuclei are treated as a special case.

IN an earlier paper by one,of the writers! general
formulas were obtained for the angular and polari-
zation correlations of the particles from B decay
transitions of any order of forbiddenness. Here
we shall examine first-forbidden transitions in de-
tail, and shall give for this case explicit formulas

suitable for practical calculations. Since the method

of the calculation has been described in reference 1,
we shall present at once the final expressions for
the correlations.

We take a right-handed system of coordinates
with the z axis along the preferred direction of
orientation of the nuclear spin j,. We introduce
the notations: p(p, ¢, ¢) is the momentum of the
electron; k(k, 6, ®) is the momentum of the vy
quantum; I is the multipole order of the y quan-
tum; jg, jgi, and j, are the angular momenta of
the nuclear levels for the S-y transition
Jo(B)J1 (V) i2s Mo, My, and p, are the z compo-
nents of the angular momenta of the nuclear levels;
and ¢(1, x, w) is the polarization vector of the
electron is the system of coordinates in which it
is at rest. x and w are the polar angles of the
vector ¢ in the right-handed system of coordinates
formed by the vectors

2 lIps Xp || Pxjor Yo ll[PxJol xP- 1)

The probability of finding the electron with the po-
larization ¢ and the momentum p from the first-
forbidden B decay of the oriented nucleus is given
by the formula:*

*The expression W(j,p{) for the STP interactions and
without inclusion of the effect of the finite dimensions of the
nucleus has also been obtained by Berestetskii, Rudik, Ioffe,
and Ter-Martirosyan.2 We have leamed that they have general-
ized their result, but have neglected in their calculations terms
of the order (pR)? and vyuc'; these can however, have an im-
portant effect for certain values of the nuclear matrix elements.
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W (%) = X Afrhe (G0 W (ihil'jogiicl),  (2)
g, L

hg (Jo) = 21 (— 1) C8 e @ (o), ®3)
Afr =281V 2g + 1P, (cos 9)
+ (— 1) Q4T fm (%, 0, 9). 4)

Here L and L/ =0,1,and 2; g=0, 1, 2, 3, but
with g =2jp; m=0,1,...9, with m=0 for
g=0, m=1,2,3 for g=1, m=4, 5,6 for
g=2, and m=17,8,9 for g=3. Common factors
have been omitted throughout. If the polarization of
the electrons is not observed, we have

Afp =281V 2g + 1Py (cos 9). (5)

For aligned nuclei (obtained, for example, by the
method of Bleaney® or Pound*) only even values of
g are possible. For arbitrarily oriented nuclei
(obtained, for example, by the Gorter-Rose meth-
od®) odd values of g are also possible. C%gc are
Clebsch-Gordan coefficients,® W (abed; ef) are
Racah functions,” and w ( Kg) is the probability of
a given value p, for the angular-momentum com-
ponent of the oriented nucleus. The values of z8 _,
and yIfL, are given in Appendix 1. The values
of fmy (X, w, ¢) are given in Appendix 5, and
Pg(cos #) is the Legendre polynomial. The values
of jg(Jo) = jgBhg(Jy) are given in reference 8.
The angular B-y correlation for first-forbidden
transitions in oriented nuclei has the form

W (jo 0, k) = X X\ 221 Usihg (Jo) BsFses (P, k), (6)

SJg LI’
Ustr = (— 1) YV (2g + @S + 1)

XX (j1jsSs Jojog» L'LJ), V)]



BETA PARTICLES AND BETA-GAMMA CORRELATION

Bs=V@h+ D@+l —S(S-+1)/2[(+1)]
X W (jol 1S;111) Clbso.- (8)

Here L and L'’ =0,1,2; J=0,1,2,3; 0 =g=
2jg, with |S—J| =g =S+ J. As before, only even
values of g are possible for aligned nuclei. The
quantities X (abc, def,.ghi) are Fano functions;
their properties and explicit form, together with
a number of particular values, are given in ref-
erence 6. The Fng( P, k) are given in Appen-
dix 5.

If we are interested in the correlation between
the direction of the B particle and the circular
polarization of the subsequent y quantum, we
must insert in Eq. (6) or Eq. (14) instead of Bg
the quantity

Bsu =V @ + 1) (2r + 1) Cidiso W (i1 11S; jul), 9)

where M =1 or -1, respectively, for right or
left circular polarization of the y quantum. In the
particular case in which S=1,

Biy=MIj1(i+1)—j2(a+ 1)

HIT+DIRII+ )V i+ DI (10)

If the observed B-y cascade has the form
Jo(B) i1 (v1) j2(v2) - . . iN-1 (¥) N, and an experi-
ment is made to study the angular distribution of
the y quantum of the jy_;(v)jN transition, then
we must take jN-; instead of j;, jN instead of j,
in the expressions for Bg or Bgpy and multiply
these expressions by the product

N—1
H V @ix + 1) Qjr—s - D)W (jal #Sik—s; jr—-1ir)-

k=2

11)

If the 7y transition is of mixed nature (for ex-
ample, E2 and M1), then instead of Bg we must
take the expression of Eq. (13) of reference 9.

If the nuclei are unoriented, g =0, and the ex-
pression (2) determines the total polarization of
the electrons. The degree of polarization can be
characterized by the quantity

Wix=0—W(E=m)p

S =g =0TVo=" 7" (12)
Using Eq. (2), we get
© = ©/n) Qv / 2y (13)

Setting g =0 in Eq. (6), we get the expression for
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the B-y correlation for unoriented nuclei:*

Wp. k)= > D 2S+1)z.

S=0,2 LL’

XW (jojrLS: L'jx) BsPs (cos Ok)- (14)

In the case in which the nuclear charge Z » 2AY3E
the expression (2) can be considerably simplified:
W (o, p- ) = 230 + Vm 2+ (ygo + Vl_/?y‘;l) cos /.
+{V'3 (U —2i) cos & + 3 [(yi — V2/ 54 U
— (gt — V' 2[5 yi)] cos x cos & — 3 [(gi1 + V Yo 1) U
— (o1 + V10 yor)l sin 9 sin y cos o
— 3V s (YU — y¥y) sin & sin g sin o}

X Lo (jo -I- 1)]_1/’22 2o (4o),

V2U = lig(jo + 1) — jr (js + 1) + 2]

X2V o (o + DI (15)

The values of Z%L' and yIEL, as used in Eq. (15)
are as follows:

V320 = %5 (bu + 206 + 2V 2 bye),
3V 3z =V6yn=V2x%, (cu + 2 + 2V 2c10),
27y = V' 252 (&) (byr + 266 + 2V 2byo),
27y% = 4 V5% (byy + 2bes + 2V 2by),
9y = — 2x%3 (11 + 265 + 2V 2 C16)s
325, = 2% (€12 + V§C2e),
V64l =8V 5xA (bys + V2 bs).
9V 3y = 22 (7] (bre + V 2 bio),
3V = — 47 (s + V2 020),

0 — 0 0
200 = %%E1 baay Yoo = *%E3Cas.

Here
®¥% b = (W — 1)2(E +¢)Re b -+ (W - 1)2 (E — 1) Re bz,
@ (& b = — 3 (W — 1) (E + y) Re b
+ (W + 1)? (E —y)Re bir,

®*\ b = (W + 1)* (E — 1) Re bir,

EEgc[,» = pRe (023 + ) — oZ Im (Ciz — c},-"r).

*W(p, k) agrees with Eq. ( 10) of reference 9 if we note that
in the notations of reference 9 the quantities 25+ are (28 +
H (L' + D% S[ReMy Mkl CSLL, Unlike those of re-
i<k
ference 9, our expressions ziL: are given for the 8 interac-
tion of general type with parity nonconservation.
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We get the values of k%erbji» and Eelcjjr from
k*t7bijr and Egdcjir if in the latter we replace
Re xﬁ' by Im xﬁ' and Im xiii' by —Re xﬁr. The
values of bjj» and cjjr are given in Appendix 1.
‘The forbiddenness of the B transition that comes
from the smallness of pR is removed for large
values of Z, since instead of p the integrand
contains the quantity « = [(E + V)2 - 1]1/2, and
k > p. Since k-= V, where V is the effective
depth of the Coulomb well in the region of the nu-
cleus, the dependence on the energy drops out,
and the B transition becomes similar to an al-
lowed one. A comparison of Eq. (15) with the for-
mula for the polarization of the B particles from
allowed transitions of oriented nuclei! shows that
the character of the polarization is the same in the
two cases (the nuclear matrix elements are of
course different).

For Z > 2AY3E the expression (6) also be-
comes simpler.

W (jor b, k) = D) V25 + 1 {[(2fo + 1) 20y
S.g

+ VW (Sioirl; jo 1) 2] 8s¢Ps (cos B)
— (— 18V 2g + 1120 W (joSiol; jog) V 1/3,(2f0+1) (— 1)*
+ 24X (1i1S, joio@» 1111 Fsgr (P, k)} g (jo) Bs.  (16)

For the case of an even value of the quantity S +g
+ J the values of z‘{L, are the same as the cor-

responding values of Z%L,in Eq. (16), and in the
case of odd values they are obtained from them if
we replace k%:7bij’ by kZerbiir and Etcjj by
Eegciil. In allowed transitions of unoriented nuclei
there is no B-y correlation. Thus it is to be ex-
pected that for Z > 2AY3E the correlation will
also be small for first-forbidden transitions. This
result can be obtained directly from the explicit
form of the Z%L, appearing in Eq. (14). On the
other hand, for B-y transitions of oriented nuclei
we must expect a large correlation in the case

Z > 2AY8E, since there is such a correlation for
allowed transitions. Comparison of Eq. (16) with
the expression for the B-y correlation in allowed
transitions! shows that the character of the corre-
lation is the same in the two cases.

For aligned nuclei with Z > 2AY3E the corre-
lation between the directions of j;, p, and k can
be large only if the invariance of the theory under
time reversal is violated.

APPENDIX 1

Values of Z%‘L, in Egs. (4) and (5) and, for the
case of even values of the quantity S+ g+ J, in
Eqgs. (6) and (14):

A. Z. DOLGINOV and N. P. POPOV

230 = %%piEy oy — 6"2@2521723 + 9%51{7733
- 2‘7"290222“22 -+ 64%5? Qo3 + GPPop1 baa,
V3 2(1)1 = 2o, [(&7 + 28) by + (281 +62) bge
+2 V2 (G —&) byl + 6 V?szqozé‘l’ (V§b4e + b14)
+ 27<P0 51*.(744 — 2‘7”2‘?25‘1) [a11 — 2aq + 4 V§ (ag1 — as6))
—6V3 Q%EI‘_ (@ — V2 ass) + 3G%Popr (D11 + o),
V15 Z?l = — %, [285 (V§b11 - nges + 26,6 — bg1)
+ & (1/2 b + Vl_/; bes — 2b16)] —6 Vgxch.zsg (V§ b14 e be4)
+ 2gx3pap3 (Viau + V2 a6 — 2a;5 — ag1),
2= V5 (ks + g2 bss, 2V 52 = —V 1483 bss
-l/gz‘éz =—2 V§ {p1E5 5o — 3”2%52553 — qxchngasz}y
V52 = — V220 (& (V2bs1 + 2b56) + & (bss — V' 2651)]
+ 3 ]/gx’-’:,:‘gégb“ — ‘7”2‘19292(‘/5051 — 2a5)},
3V3z, = V'2 (3o, (6 (C1 + 2065 + 2V 2016) + 284 (Cos
—C — V§Cls + V%Cel) + & (€11 + /2 Cep — ]/-2_(:,6)]
+ 61 3xp, [6 (c1a + V' 2cq0)
— 5;*. (€14 — V% Cea)l + 27"%52044 .
— 2qugs 05 (dyy — 2dge — V§d16 + ngel)
— {’4_ (des +dy — ngle
- Vl/—z dg)] —6 1/3_‘]“’19052 (d1s— l/idu)
+ 3‘]2“(?093 (Y266 — V§Cw)}v
V—B—S Zg:: = —3 V2_"3(P1&gcas’
V30 23 = (3%3p1E5 + 5q%x5008) Cs5»
3Z<1)1 = 2 {x%p, [Eg (€12 + Vz—Cza) + Eg (2¢12 — Vicsz)]

+ 3, [E;_ (]/5624 - V“?Cea —ci3) + Ej (V§C63 — 2¢13)]
- 2(7”?2 [Ps— (d12 + Vl/_/z das — Vlﬁ dez) + .0; (d12 - Vl/_z dez)]
— 3g%9, & (ngm —ds + Vidas)

—9 V3_x'poEgC34 + ¢Ppou3 (€12 — }/gc‘:e)}v

32}2 = — Vg{xa%éﬁ (2¢51 + Vgcse) —6 VS_“:PzE:r Cs4
— s (25, — V§d56) + 242"%92 (2¢15 + ﬁcss)},
VZO’_S Z:;z = 613%83 (Ces — Vgcxs)'
Values of yrI?L, in Eq. (4):
.’/30 = ”3‘{9152 Cop — 6*‘?25;- Ca3 + 9“%53 C33

— 2qnpap3 doy + qu(PoEgdzs + ‘72"%93 Cas,
OV By =4V5 (% | (bre + V Zbu)

+ & (\bli’ — l/l/_zbzs>] + 3“-2<P2 [25(1) (V§b24 — l/gbse

— byy) +- & (Vl/_z bss — b13)] — @P¢y [29(1) (aa1 + ays
- Vgaze -+ V2 Qg2) + .Og (a2 — Vl/_2 Qg)] — 657%8?- (V§a24
—a;+ l/"§ae3) — 18 VchoEj—bu + 2¢%¢opy (b1 — Vé'bze)}»
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5V 5y = 2{x® 163 50 — 3%3:25;" Cs3 — qrpapy dsa}s
— 15 Y T4 ys, = 3045 = TV7 22,
2Tyl =V6my —2Y15mi —3V2Q,,
2Ty =5V 6n +4V 150, —12V5 Py,
ng& = 3’"}1 ~—l/g_Qm
5V 1044 =3th, 5V5yn=—3V7m,
Yoo =V O6mp, 3V 2ym=—mny,
3V 5yl =1l Tys=-—2V5mb,
4945, = 24V 3ng,  V6uyh = —2s01, V24 = s
V6 yia=2st;, V245 = sh,
TV35h=5V2t, 9V 3y,=5ml—2V5Q,,
9V 6y5a=5(V5nl, —8P,), 25V 2yl =3nl,—1;V 142},
5% = "fs Va2l + 8/ VT mi,.

In the expressions for Z%‘L, and yIElL, the fol-

— V65,
3!/;2 = 25:’2}21
V§y§2 = — V2—5;2,

3y%1 =

3!/;2 = - 25?2,

lowing notations are used: k2 = W2 - 1, W=E+V,
where E is the energy of the electron in units mc?,
including the rest energy (hi=m =c =1). For the
case of a surface distribution of charge V = aZ/R,
where R is the radius of the nucleus; for a uniform
volume distribution V = 3aZ/2R. The energy of the

neutrino is denoted by q.
8 xiw= (W - 1) (8 Re + o Im) x&
+ (W= 1) (87 Re -+ a7 Im) xjz,

g0 = B Re + of Im) xi - (B7 Re + o7 Im) x7.

The quantities let and oz:lt are determined from
the condition of smooth joining of the electron wave
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function at the surface of the nucleus. The explicit
forms for these quantities are given in Appendix 3.
The quantity x;j» is any one of the quantities ajj/,
bjjr, ¢jjr, or dijr.

For the STP or VA interactions p}=£} and
p? = g}t. The meanings of p:lhy.cii, and polxii, be-
come the same as those of gi‘xﬁ: and g‘}xﬁ:, re-
spectively, if one replaces all the ,B’Jl' by Bl', all
the a;' by oy, and vice versa. The expressions
for ziL, for odd S+ g+ J can be obtained if in
the values of Z%Lr given above one replaces
Re xﬁr by Im xiiir and Im xﬁ: by -Re xiiir. In

calculating y3; one must replace 3'5" and a;“ by
38f and 37 and set Bf = af =0. In the calcu-
lation of y§, one must put —58f and -5ajf in-
stead of Bf and af. We get y}; from y3 if we
multiply B5 and a3, B and a7 by —2(%)Y2
(%)Y?%/4, respectively, and set B; = — 367, ozi" =
-3ai, and B‘s"=o[5"=0. We get y3, from yi,

if we set Bf = af =0 and multiply B; and o

by 2(14)1/2. We get m%L,, H%LI, and t%,L'

in the corresponding Z%L: we replace let by

+ + + + + . +
vi1B7 and a by vyjay, using the values of yj
from the table. We get S%L/ if in addition to this
we replace Re xﬁ, by Im x:iti, and Im Xiii' by

+
Re Xjjr-

Odd values of g

r mix S:: ":1 t:l ’";z s;z 331 ":z m:z s:z
thy 1 1 0 0 1 1 1 0 0 1
Y‘:r 0 —1,2 0 —5 —1/2 |—5 0 1/2
Y 0 172 | —2 1 1/2 1 1 |—1/2
Te 2 2 1 2 5/3 2

Even values of g
+
Yi ’”gl mf: "fx "‘1)1 m:z my, "(z)z n:z S:z m:z ":z St t:z
¥ —3 0 1 0
\on 1 1 |—1,3 10/3
vl 3/2{0] —3|0/|—3/5|—1/7| 3 1 —3/5 |—6/5| 0 1
v, |52 )0 110 1 1 |—1 0 1 2/5| 0 |—7
vt 0] 3;2 —1 0 3 |— 0
5
Yo 1 1,2 1 —2 1 1 0
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Q1 = g% [p1 ) (b11 + 1/2bﬁ+ V§b18)1
Q2 = ¢ [p1 1 (b15 + Vl/ 2bes)y_
Qs = ¢®ypg (C11 + YoCos + V 2016)-

We get [p;] if in the expressions for p; we re-
place the quantities ff and of by -38f and
—-3af. We get the values of P; and P, from Q
and Q, if we set By = @; =0 and do not multiply
B and of by —3. All the other z& [, and y]y,
are zero. The quantities x;j» for the STP inter-
action have the form:

aj = by =mwKKz, ¢ = df = KKz,
i = CCr + CiC7, i = CCr + CLCy,
M1 =|CsP+[Cs, ms=|Cp[*+|Cp
s = CsCp + CsCp.
Mk = CsCr + CsC7, mge = CpCr + CpCy for k==1,3.
e =|Cr [P+ |Cr* for kK =2,4,5,6,
Nir = "I:’i'
The quantities Cg, CT, Cp, Cy, and Cp are
the constants for the scalar, tensor, pseudoscalar,
vector, and axial-vector B interactions; Cg, CT,
and so on are the analogous constants for the terms
that can be admitted only since there is parity non-
conservation (i.e., the terms containing an addi-
tional factor vs = Yy;YsYsys, Y4 = — B); the K; are
the nuclear matrix elements for the B interaction.

Their explicit form is given in Appendix 2. For
the VA interaction

b = —aj =CpLiLy, df=—ch=ULL7,
Lw = CCr+CCy, lwr=CLCr 4+ CCh,
C11=C44=5147; CV 2"|- Cl’/ 2,
Lpr= Ca2+ Ca? fork, k'==1,4,
L =Clae=CvCa+CyCa for k==1,4,
L = Gi.

The nuclear matrix elements Lj differ from the
corresponding K;j by an additional matrix B in
the integrand. The expressions for xjj’ in the
general case of STPVA interactions are given in
Appendix 4. Equations (2) and (6) contain the imag-
inary part of xjj because we have not assumed
the invariance of the B interaction with respect
to time reversal. If we make this assumption all
terms containing Im x:ihir must be thrown out, and
comparison with experiment becomes considerably
simpler. To settle the question of the invariance
of the theory with respect to time reversal it is
better to study the - 8-y correlation and the polari-
. zation of the B particles from allowed transitions
of oriented nuclei,! since in that case the interpre-
tation of experiments is simpler and more unam-
biguous.

The values of zy,1s and yp,1/ given above are
for the case of a surface distribution of the nuclear
charge. If we assume a volume charge distribution,
we must make the following replacements:

Fo— ¥, Pifr — Pafi — (3aZ/5R)E] + (32Z[10xR)* &,

ot — o5E) — (30Z/10x2R) &, @187 — bz,
PiEs — o5 — (32Z/10R) Eg, ‘?252 - ‘PsEgy
@153 —> [pg — 30ZW /SR + (302/10xR)?] &,
o) —> @8 — (3aZ/10:2R) ET, 9200 —> el
ok —> @5ty — (32Z/10R) &3, ke — ks,
P03 —> @5p3 — (3aZ/10R) g2, o — ¢etd,
P2Pa — Psla;
V =aZ/R—30Z/2R.

The values of the ¢ are given in Appendix 3.
Apart from terms of the order (aZ)2/4 one can
set @ij=1.

To go over to the case of a point nucleus one
must take the formulas for the surface charge dis-
tribution and set V =3aZ/2R.

APPENDIX 2
Ki= Va4 Odhundr, L=V 4804 0dr,
0, =CyBYn, 0.=CyB (°‘Y;m),
05 = —iCyB1sY gy Os = iCB (2°YTY),
05 = CorB (aYa), Og= — CyrB (3+YD),
Co=IClI
Ki=V3 (pr, K ={por, Ke=—ipr,,
K, = Sip“, Ky = QSB& Ke = — V%S.B["'xr]’
L= VﬁSr, L, = Sc-r, and so on.
‘pjoﬂo and Pj My are the wave functions of the initial
and final states of the nucleus; T is an operator
that acts on the isotopic spin variables; B, vs, 0,

and a are Dirac matrices; Yj); is a vector
spherical harmonic (cf. reference 1).

APPENDIX 3
B = alyan, [(W £ 1) %],
B = 9al, ., (W £ 1) 572,
BE = @uyus@yysy22 08 Sy, — Buppavs),
BE = 3ay,zy,a,zy, (W £ 1) cos By, — Si,5),
B = Bay,wu,au,1%7® 08 (Buy, 3y, — Syp1s),
B = 9as), 1,a%—s/ x4 cOS (8,411, — Su,311,).

Here the aj) are the coefficients for joining-on
the electron wave function at the edge of the nucleus;
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j is the total angular momentum and 7=j + A the APPENDIX §
orbital angular momentum of the electron, A = 3. . .
Tables of the numerical values are given in the book Values of iy (X, w, ¢) in (4) and Fng (p, k) in (6).
of Sliv and Volchek.!? The 6ja are the phase shifts fo= cosy, [i1=3{cosycos$—sinysinbcosw},
of the electron wave function in the Coulomb field
of the nucleus. Tables of the 6j, are also given B
in reference 10. fs = —3V /10{2 cos y cos &+ siny sin $ cos w},
The quantities a:f differ from the correspond-
ing B:lk only by the fact that they contain sin (6; iy
- 6 j'Ar) instead of cos (6j\ - 6jar), and of =
2 = 0. Neglecting terms sma.ller than the order
of (aZ)?% we can obtain simple expressions for

fo = 3V ,sinysin®sino,

fa= —V¥/;{cosy (3cost® — 1) — 3siny sinH cos $ cosw},
fs = )2V %/, {cos y (3 cos? & — 1) + 2sin y sin & cos & cos w},
fe = — 3/ 3/5siny sin $ cos 9 sinw,
f2= 3,V 7sinysin®(5cos?9 — 1)sino,

Bf and af: fs = 3/2V/7]s {cos x (5 cos® $ — 3 cos 9)
Bf = (E£ /(W 1), BE = [p + (aZE)} x 2B, —siny sin (5 cos? & — 1) cos w},
5 — VT GDR, 8 — VT GZETE cosof, fa = — YV 7 (hcos 1 (5 cos? § — 3 cos)
g5 =V p® + (aZE)?px2cos 0y, + 3siny sin 9 (5 cos? 9 — 1) cos w},
5 — 2081+ ZEPI VI T IR, of — --aZbip,

Fsgs (p, k) = 4mi7 X\ CylseY sa (OD)Y 7o (99),
l)s+g+-/.

—aZ
af =B tanof, of =fitaney, o =FI 6,

tanof = |2 92 4 Le7]

where 2=1—(—

4 p —4p Some particular values of Fggg(p, k) can be
a aZE \21—1 expressed in terms of the values of f,, (=0, ¢ -9
[T
3 aZE 3 oz Fuo=—fo, F101=f1,
tanmf-:‘t_[4 p =% ;] Fin=—"f2 Fi1="fs, Fua= —T4,
[1__:_;_ EEZ) (az)z+8( ) +(¢ZE)] ) Fiso=—Tfs, Frsa=fes Frss= —f2, F1as = fs» Fras = fo-
= VT—= (@) 1A. Z. Dolginov, J. Exptl. Theoret. Phys.
_ (U.S.S.R.) 33, 1363 (1956), Soviet Phys. JETP 6,
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