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The energy and angular distributions have been obtained for particles obtained in diffraction 
disintegration of a weakly-bound quantum-mechanical system (deuteron etc.). The energy 
distributions are practically identical with those observed in stripping, whereas the angular 
distributions are appreciably different. A simple physical explanation of this difference can 
be proposed, and it may be of importance in interpreting the experimental data. 

l. Diffraction disintegration of the deuteron was 
investigated by Feinberg, 1 Glauber, 2 and Akhiezer 
and Sitenko, 3 all of whom used a computation method 
analogous to the Kirchhoff method in the diffraction 
of light. It yields good results only in the vicinity 
of the geometric shadow. The most reliable result 
in the theory of diffraction disintegration is there
fore the differential cross section of the process 
for small angles. 

Diffraction disintegration of a deuteron re
sults in simultaneous liberation of two particles, 
a proton and a neutron. It is possible in principle 
to set up correlation experiments by measuring the 
momenta of both liberated particles. Since the neu
trons are difficult to observe, the distribution of 
only one particle (proton) is determined in prac
tice. This raises the question of calculating the 
angular and energy distributions for one particle. 

It was shown by Serber4 (cf. also reference 5) 
that in the case of fast particles, to find the dis
tributions over the energies E of one particle it 
is necessary to calculate the distribution over Pz 
for this particle (pz is the projection of the par
ticle momentum along the direction of the initial 
beam). Then Pz = (E-Ex/2)/V'Ed/M. 

Akhiezer and Sitenko3 derive a formula [ Eq. 
(16) of reference 3] for the energy distribution. 
Actually, however, this formula gives the distribu
tion over the modulus of the vector of the relative 
momentum f = .J fi. + ±} + fi ; the angular distri
bution of the vector f is already integrated in 
this formula, so that the required energy distri
bution cannot be obtained from it. 

2. We proceed to calculate the energy distribu
tion. Consider the wave function of the deuteron in 
the presence of an absolutely black nucleus. It will 
have approximately the form of the so-called "modi-
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fied" function, introduced in reference 3: 

(1) 

Here p is the radius vector of the deuteron center 
of mass in the plane perpendicular to the axis of 
the incident beam; r is the radius vector of the 
relative distance between the proton and neutrons; 
cp 0 (r) = .[(iJ2i" e-ar;r is the wave function of the 
relative motion in the deuteron in the approximation 
where the nuclear forces radius is zero, and R is 
the nuclear radius; 

.Q (p) = { 0 for p < R. 
I for p>R 

The function (1) characterizes a state of the deu
teron beam directly after the passage of the nu
cleus. It contains the deuterons scattered as a 
whole and deuterons that have experienced a dif
fraction breakup. It is convenient to separate 
from 1/Jo the portion orthogonal to cp 0 (r): 

~1 (p, r) = ~o (p, r)- cpo·(r) ~ dr'~o (p, r') cp0 (r'). (2) 

The function 1/Jt describes only disintegrated deu
terons. Henceforth we shall assume Rct « R. We 
can then neglect, for deuterons passing near the 
nucleus at a distance ,.., Rd, the curvature at the 
edge of the nucleus, and consider the nucleus to 
be a plane screen with straight edge, analogous 
to the procedure used in references 2 and 4.* 
Here 1/Jt becomes 

where 

*As shown in reference 8, the error introduced thereby is not 
greater than the error due to an inaccurately selected function 
'Po (r). 
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1 (p) = { 1'- for p < R 
et£4at (p- R)J for p > R 

The function €1. (x) is the Gold integral (see ref
erence 6) 

00 -Jet 
e!(x) = ~ Tdt. (4) 

1 

We note that 

~1 (p, r)=:O for p<R. (5) 

At each point of the edge of the nucleus we in
troduce a local system of coordinates: The deu
teron beam travels along the z axis, and the y 
and x axes lie in the plane of the screen, with 
the y axis being directed along its edge and the 
x axis perpendicular to the edge and directed out
ward from the nucleus. To find the distribution of 
one nucleon over the momenta, we must expand the 
function 1{11 in plane waves of the motion of the 
center of mass and in the wave functions 

Cff (r) = eifr - e-ifr / r (at- if) 

of relative motion, which correspond to the motion 
of the nucleons with relative momentum f at infin
ity, liberated as a result of the breakup. Since no 
momentum is transferred to the center of mass of 
the deuteron in the direction along the edge of the 
nucleus, it is not necessary to expand 1{11 in plane 
waves in the Y direction, and we can calculate 
instead the cross section per element dY of the 
length of the edge of the nucleus. Thus 

~I(k, f, Y) = (2n-f2 ~~I( X, Y, r) e-1kXcp; (r) dXdr. (6) 

Here 

k = PP~ + PnJc = ).. + p., f x = (Ppx- Pnx} I 2 = ()..- p.) I 2, 

f u·= PPII• f z = Ppz• (7) 

Formulas (7) result from the fact that we con
sider here a screen with a straight edge and neg
lect the momentum transfer in the direction of the 
primary beam. For a screen with a straight edge 
we have 

~1(X. Y, r) 

{0 for X< 0 
= - [w(xn) + w(xp)]cp0(r) + e1(4atX)cp0(r) for X> 0, 

where 

{ 0 for x> 0 
W (x) = 1 - Q (x) = 1 for X< 0, 

Using the Fourier expansion 

Cflo (r) = (21tr3 ~ !~!1t~ e-ltrdf 

and Eq. (4), we get 

./-ex { 1 1 
= J' (21t)s P(fA.-A-i2P)(!L-iP)+ P(!L-A +i2P)(iP-A.) 

(8) 

Here P = -./ a2 + 4 + fi ; 11{11 12 dA<4.&dfydfzdY gives 
the effective cross section of process, at which the 
quantities Pnxo Pp. and Y are located in the cor
responding intervals. Integration over Y yields 
271'R. Integrating over all the momenta, we obtain 
the total cross section, accurate to within terms 
of R~: 

r 1tRRd 
21tR ~ d)..dp.df 11dfz I ~~11 = - 3 (2ln 2 - 1/a). 

this agrees with the cross section calculated in 
references 2 and 3. 

To obtain the energy distribution, it is necessary 
to integrate the expression 

(9) 

over the momentum of the neutron, Pnx = J-1. and 
also over Ppx =A and Ppy = fy. This integration 
is difficult to perform in exact form, owing to the 
presence of two different radicals P and f. How
ever, a good approximate expression can be found 
for the distribution over pz = fz. In the denomi
nator of the last term of (8) we replace the expres
sion 2a- 2if + i (A+ JJ. )/t, which is slowly vary
ing, by its value at t = 1. This does not introduce 
a great error, owing to the presence of a rapidly 
diminishing factor 1/t3• After this, (8) becomes 

.ra{ 1 1 
~~ = J' {2it)i P((Jo-A-i2P)(!L-iP) + P(~;&-A-+ i2P)(iP-A.) 

. 1 }. 
+ (czi+ {1)(2cx- 2if + iiA. + !Jo)) • 

The use of 1{12 instead of 1{11. causes the total 
cross section to deviate 15% from the value 

(10) 

'II'RRd ( 2 ln 2- i )/3. Furthermore, a special es
timate has shown that in the angular range ,_, a 
the differential cross section changes merely by 
10%. This indeed determines the accuracy of the 
formula obtained later on. After making the above 
simplification, the integration over A, J-1., and fy 
proceeds without difficulty, and we obtain the fol
lowing energy distribution: 

daE RRd 1 { 3 I 

dq = -4- (1 + q2)''• 21t + 1tq 

2(1 + q2)''• } + q tan-1q- y1 + q• • 

q = (E - Ed12) I y'BE,;. (11) 

Here E is the proton energy, Ed is the energy 
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FIG. 1. Energy distributions: Solid line - diffraction disin
tegration, dotted line - stripping. 

of the primary deuteron, and E is the binding en
ergy of the deuteron. 

The distribution (11) is shown in Fig. 1 by a 
solid line. It is seen from (11) that the center of 
the energy distribution of the proton is Ed/2, and 
that the half-width is .,J EEd . 

It is interesting to call attention to the following 
fact. Were it possible to neglect the interaction 
between the proton and the neutron after the deu
teron breakup, then the relative motion of these 
particles would be described by a plane wave 
eif • r, and in order to find the momentum distri
bution it would be enough to expand l/!1 (X, Y, r ) 
in a Fourier integral over the coordinates X and 
r. Calculations with a plane wave are simpler than 
those using the function cpf(r), and the results 
are quite close to each other. The energy distri
bution obtained by replacing C"{Jf ( r) with eif • r 
is shown dotted in Fig. 1. In addition, the same 
figure shows for comparison the energy distribu
tion for stripping. Obviously, all distributions are 
practically the same. 

3. Let us proceed to find the angular distribu
tion of an individual nucleon. For this purpose it 
is necessary to integrate in Eq. (9) over J.L, fz, 
and cp, where i\ = Pl cos cp and f = Pil sin cp 
(see reference 4). The exact integration leads to 
very complicated expressions. It is convenient 
to use the following approximation. Since the 
integral in the last term of (8) is preceded by a 
factor 1/( a 2 + f2), which has a sharp maximum, 
we can put in the integrand f = 0 when integrating 
over fz. Furthermore, we can replace 2a + 2ii\/t 
by 2a + 2ii\, as was done earlier. These simpli-
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FIG. 2. Angular distribution. --diffraction disintegra
tion, ----- stripping. 

fications lead to an error on the order of 5% in the 
total cross section, and to an error of approximately 
10% in the angular distribution for Pl"' a. We 
then obtain instead of l/!1 

~3 = ((2:)8 {P(IJ.-).-i~P)(!-L-iP) + l'(!J.-A +~~P)(iP-A) 
+ 1 t 

2(a;2 + f')(a;+i).) f' 
Substituting this value of lfJ3 for l/!1 in Eq. (9) and 
integrating over J.L, fz, and cp, we get 

da RRd { 4 ( 8 ) 
-dn-, = 4r.(1 + C'l''• 3 + 4 , 1 - 3-V=g=+=,=, 

TC 1+i;'[ 3n ( 8 
- 2 + r;•- 1 + r;•;2 4(1 + t:'l 1- 3V9+t:•) 

_ 3n/4- 2/s( 1 _8_) ~( 1 __ 8_\_i+C'/3]} 
!:- 17 + 9i;2 + 3Y9+C~ + 3 3Y9+C2) 1 + r;• ' 

(12) 

The distribution (12) is shown graphically in 
Fig. 2. The angular distribution in stripping, 
shown on the same diagram, is quite different, 
being "narrower." This can also be understood 
qualitatively. In stripping, the stripped nucleon 
does not acquire additional momentum in the trans
verse direction, and has the same momentum that 
it had inside the bound deuteron. To the contrary, 
diffraction disintegration cannot occur without one 
of the nucleons receiving a momentum p 1 "' a, 
sufficient to destroy the weakly-bound deuteron, 
and this leads to a larger probability of momenta 
proportional to a . 

4. So far we have considered diffraction disin
tegration of a deuteron, in which the proton and 
neutron have equal masses. However, there exist 
weakly bound systems which also can experience 
diffraction disintegration, but in which the masses 
of the component particles are quite unequal. An 
example is Be9, in which the binding energy of the 
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last nucleon is merely 0.6 Mev (see reference 7), 
i.e., even less than in a deuteron. Diffraction dis
integration of Be9 l'esults in the production of a 
neutron and the nucleus Be8• This raises the prob
lem of finding the energy and angular distributions 
of the diffraction-disintegration products of a 
weakly-bound system, consisting of particles of 
unequal mass. This calculation is quite analogous 
to the previously analyzed case of equal masses, 
where instead of (8) we get 

~!().., p., fu, fz) = V(2:)" {P(fL-bf..la:iPia)~J..-iP) 
1 

+ P (J..- ap. I b + iP I b) (IL- iP) 

00 

1 \ dt 
-a."+f'.) t8 [(a.-if)la+ik!tj 

1 

00 

1 \ dt } 
-a.•+t'.) eua.-itJib+ikltJ • 

1 

(13) 

The symbols in (13) are the same as in (7), except 
that now fx = bA. - ap., where 

a=m1/(m1+m2), b=m2j(m1+m2), a+b= 1. 

We note that the shapes of the curves are deter
mined by the parameter-s a and b. But in cases 
of practical interest, whenever a ;>< b, we also 
have a« b (for example, for Be9 we have a= 
b/8). We shall therefore calculate our curves for 
two asymptotic cases: when a light particle is ob
served (a= 0, b = 1 ), and when a heavy one is 
observed (a = 1, b = 0 ) . 

The shape of the energy distribution is the same 
for a light and heavy particle, and is given by 

daE R 1, 7~ 
dq= 4a.(1+q•J''• l2-4 1 +q2 

2 (1 + q2 )'1• } + r. ( 1 + q2) - q tan -l q , 

q = (£- :; Enuc)fV 2Enuc/M, {14) 

where Enuc is the kinetic energy of the incident 
nucleus, E is the energy of the observed particle, 
m is its mass, and M is the sum of the masses 
of the formed particles. 

The entire difference in the energy distributions 
of the light and heavy particles reduces to the fact 
that the 9enter of the distribution for the light par
ticles lies at mEnuc /M, while that for the heavy 
nucleus is at ( M - m ) Enuc /M. It can be shown 
that the distribution (14), expressed in terms of 
the variable q, hardly differs from the distribu
tion for the case of equal masses, but the meaning 
of q becomes different. 

Let us now proceed to the angular distributions. 
The angular distributions for the light and heavy 
particles respectively are given by 

3_ R {( 3") 1 1 } 
dO.~ = ~ 1 + 16 (1H•)''•- (1 + ~·)2 ' 

(15) 

dah R { 1 ( 1 ) 1 ( 1 ) 
do.~ =-;- (1+ c•>''• 1- 3V 1 + c• - 4+ 2~· I- 3V"1 +C2 

1 (1 1 ) 771:-8 } + -3-(1-+-, ...... >.,,--, (-2-+-~-.l + 5(1 + ~·> -32 (2,+ ~·>V1 + c• · (16) 

Here t = Pl/a, d!1t = 27l'tdt. 
In conclusion, the authors thank E. L. Fe'!nberg 

for guidance and for a detailed evaluation of this 
work. 
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