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Multiple elastic scattering of polarized spin-! particles in an isotropic homogeneous medium 
is considered. The kinetic equations determining the distribution function and polarization 
vector of scattered particles are solved approximately. A solution which is valid for both 
small and large scattering angles has been obtained as a series expansion in spherical har­
monics and spherical vectors. 

1. INTRODUCTION 

IN connection with the testing of parity conserva­
tion, electrons and other particles produced in the 
course of various transformations have recently 
been found to be polarized. In experiments with 
polarized particles it is necessary to take into ac­
count the effect of multiple scattering on both the 
magnitude (depolarization) and direction of the 
polarization vector. The latter effect has been 
used ih a number of investigations1•2 to transform 
longitudinal polarization into transverse polariza­
tion, which can then be detected from the azimuthal 
asymmetry of electron scattering in nuclear Cou­
lomb fields. 

Bethe and Rose3 were the first to estimate elec­
tron depolarization through multiple scattering. 
Mlihlschlegel and Koppe4 recently determine the 
distribution function and polarization of multiply 
scattered particles for only small angles. How­
ever, polarization effects are most significant at 
large angles, although the scattering cross section 
is greatly reduced with increase of the angle. In 
the present work we considered both large and 
small angles to obtain the angular distribution and 
polarization of particles passing through a scat­
terer of limited thickness. Inelastic collisions 
were disregarded. The equations that were derived 
agreed with the results obtained by Mlihlschlegel 
and Koppe for small angles. 

2. SINGLE SCATTERING 

The scattering matrix of electrons in a centrally 
symmetrical field can, as we know, be represented 
by 

.Q = f (9) .:.___ ig (9)~ • a, ~ = [nx n'] 1 sin a. (1) 

Here 6 is the scattering angle; n and n' are the 

unit vectors of electron momentum before and after 
scattering; a is the Pauli spin operator. The func­
tions f and g for a Coulomb field have been given 
by Mott. 5 Approximate expressions for these func­
tions up to terms containing ( aZ )2 are given in 
the Appendix. 

Before scattering let the state of polarization of 
the electron beam be given (in its rest frame ) by 
the density matrix p ( t) = ( 1 + ta)/2, where t = 
Sp ( ap) is the polarization vector. Then the dif­
ferential cross section for scattering from the state 
with momentum p = pn and polarization t to the 
state with momentum p' = pn' and arbitrary polar­
ization is given by 

S (n, ~; n') = Sp (.Qp.Q+) = B (9) + D (9) ~·~· (2) 

The polarization vector t' of the scattered beam 
is given by 

~· = Sp ( a.Qp.Q+) I Sp (.Qp.Q+). (3) 

Using (2) and calculating Sp, we obtain 

~ s (n, ~; n') = B~ + F r~x ~] + c ~X [~x~] + D~. (4) 

B, C, D and F are given in terms of f and g 
as follows: 

B = If 12 + I g /2 ; c = 2J g J2 ' 

D = i (fg"- f"g); F = fg" + f"g. (5) 

It is evident from (4) that scattering can change 
t in both magnitude and direction. Polarization 
effects in both single and double scattering have 
been considered in detail in many papers (see the 
review by Tolhoek, reference 6 ) and will not be 
considered here. 

3. THE KINETIC EQUATIONS 

An electron beam scattered in an isotropic 
homogeneous medium will be characterized by the 
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intensity I ( n, r) and polarization vector t ( n, r). 
The equations that determine I and t are easily 
obtained from elementary considerations. Let us 
consider the product It= G which gives the in­
tensity of spin transport. The variation of this 
quantity per unit length of path is given by the 
derivative (n • V) G and consists of the two parts 

-NO (n, r) ~ S (n, ~; n') d!J.' 

and N~O(n', r)S(n', ~(n', r); n)d!J.', 

where N is the number of scattering centers per 
unit volume. Using (4) and denoting the total scat­
tering cross section by a, we obtain 

n•V 0=-NaO+N~(AO'+DI''Y)d!J.'. (6) 

Here G' = G ( n', r), I' = I ( n', r), and A denotes 
the operator 

A= B + F ('\IX ••• 1 + c ['11 X ['11 X ••• }}. (7) 

An equation for I is obtained analogously: 

(n• V) I=- Ncr/+ N ~ (BI' + D'Y•G')d!J.'. (8) 

We note that in a paper by Waldmann7 the kinetic 
equations for a particle with spin are given in ma­
trix form using the scattering matrix. For the case 
of electrons these equations can easily be put into 
the form of (6) and (8). 

We shall consider a scatterer in the form of a 
plane-parallel layer bounded by the planes z = 0 
and z = d. For a beam of finite width I and G 
will depend on all three coordinates x, y, and z. 
Both sides of (6) and (8) will be integrated with re­
spect to x and y; the x and y derivatives van­
ish and V is replaced by ajaz. I (n, z) cosJ.dU 
will represent the number of particles passing 
through the plane z = const in the n direction 
per unit time, and t = G (n, z )/I (n, z) will rep­
resent the polarization of these particles. Intro­
ducing the dimensionless variable T = Naz, Eqs. 
(6) and (8) become 

cos &a I 1 a't = - 1 + ~ (Bl' + v.,o') dD.'. 

cos a-ao; a't =-o + ~ (AO' + DI'.,)dD.'; (9) 

B, C, D and F in these equations differ from 
the expressions in (5) by the factor 1/ a. 

The boundary conditions are 

I (n, 0) = flo) o (n- n0), 0 (n, 0) = /(o) ~(o) o (n- n0) 

for cos&> 0. 

I (n, t) = 0 (n, t) = 0 for cos &<O; (10) 

n0 ( J-0, cp 0 ) gives the direction of the incident beam; 
t = Nad; the o function is normalized by 
J o (n- n0 ) dU = 1. 

Hereinafter we shall limit ourselves to a beam 
of normal incidence (cos J-0 = 1 ) • Instead of (9) 
with the boundary conditions (10) it is more con­
venient to consider two system of equations with 
corresponding boundary conditions: 

aio/ a-c =- 10 + ~ (BI~ + D'Y·O~) d!J.', 

aGo/ at=- 0 0 + ~ (AO~ + DI~ 'Y)d!J.', 

I 0 (n, 0) = /(o) o (n- n0); 0 0 (n, 0) = /(o) ~(ol o (n- n0); <n 

cos & (ailfa-c) =- /1· + ~ (BJ~ + v.,a~> dD.' 

+ (1-cos&)a/o/a't, 

cos & aGlja-c = - 01 + ~ (AO~ + D/~'11) d!J.' 

+ (1-cos&)aGo/a't, 

/t(n, 0) = Ot(n, 0) = 0 for cos&>O, 

I 1 (n, t) = -I 0 (n, t); 0 1 (n, t) = -Go (n, t) 

for cos & < 0. (II) 

When I = I0 + I1 and G = G0 + G1 the equations (I) 
and (II) are equivalent to the original equation (9) 
and boundary conditions (10). 

4. SOLUTION OF SYSTEM (I) 

The equations of (I) differ from the exact equa­
tions by the fact that cos J. is replaced by 1 in the 
left-hand members, which means that the true path 
dT /cos J. traversed by a particle in the layer dr 
is replaced by a segment dT representing its path 
in the original direction of motion. The distribu­
tion function for unpolarized electrons was obtained 
in this approximation by Goudsmit and Saunderson. 8 

In the small-angle approximation the right-hand 
members in (I) give equations for I and G in 
small-angle scattering. However, it i~ our inten­
tion to solve the exact system (9) for all angles, so 
that we shall first obtain an exact solution of (I). 

I0 and G0 will be given as series of spherical 
harmonics and spherical vectors:* 

lo (n, 't) = L ltm ('t) Ytm (n), 
lm 

G0 (n, 't) = ~ GJM(') YJM (n). (11) 
JLM 

In order to transform the integrals in the right­
hand members we expand the integ~ands in series 
of spherical harmonics, as follow&: 

*We shall use Bethe's definition9 of spherical harmonics. 
The definition and properties of spherical vectors have been 
given by Berestetskii, Dolginov and Ter-Martirosyan. 10 
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B (B) = E BzY;m (n') Y lm (n); 

"' 
8 1 = 2TC ~ B (0) Pz(cos B) sin 0 dO. (12) 

0 

Considering also that 

[YIM] ... = (-1)1-f-'C{X+ ... l-IL YLM+IL• 

where C~~1~m2 is a Clebsch-Gordan coefficient 

and the index JJ. = 0, ± 1 denotes cyclical compo­
nents of a vector, which are related to its Cartesian 
components by 

ao = az, a± 1 = +(ax+ iau) I lf2, 
we obtain 

~B (B) I~d!J.' = ~Bzlzm('t) Ytm (n), ~ B (B)O~dQ' 

= ~ B~.GIM ('t) YYM (n). (13) 

For the expansion of D (e) v!J. = D (e) [nn']JJ. /sin e 
in spherical harmonics we note that D ( e )/sin e 
transforms as a scalar while [nxn']JJ. transforms 
as a vector component. We can therefore write 

D (B) [nxn'J ... Isin B = i ~ D~C}~zm· Y lm (n) Y lm' (n'). (14) 

To determine Dz we let J.' = qJ' = o in this 
equation. In virtue of the orthogonality of the 
spherical harmonics and of the Clebsch-Gordan 
coefficients, we obtain for Dz: 

D~ = (V 81e (2l + 1 )13) 2} C}~10 C~~~ ... ~ ~i~a~ n...Y; ... (n) d!J. 

"' 
= (- 1 )1 [(2l + 1 )l3l (l + 1 )j'1•21t ~ D (B) P} (B) sin 0 dO, 

where Pz is an unnormalized associated Legendre 
polynomial. 

Making use of (14), we obtain for the integrals 
contain D (e): 

~ D (B) /~v d!J.' =- i 2} Ddzm Yfm. 

~ D (B) O~v d!J.' = - i ~ DzGfmY zm; (15) 

"' 
D1 = [21t I lft"(-.--l +--,----,1-,--:)l ~ D (B) P} (B) sin B dB. (16) 

The integrals containing F ( e ) and C ( e ) are 
calculated similarly, using Racah's formula for 
the summation of Clebsch-Gordan coefficients. 
We obtain 

(17) 

"' 
FJ = _ L(L + 1)-J(J + 1) + 2 21t\ F (B)P1(B)sinBd0· (18) 

L 2L (L + 1) ) l ' 
0 

(19) 

c~t1 =- 1t (3l + 4) Czol(2l + 3) 

(20) 

Cl/1 =- 1t (31- 1) Czol(2l- 1) + £ 1dl (21--1), 

"' 
cL11+1 = ci+ll-1 = f21tl(2t + 1) yz (t + 1)J ~ c (B) P}(B) dB, 

0 

"' 
C tm = ~ C (0) P'J' (B) sin B dO. 

0 

Substituting these values of the integrals into 
(I), we obtain four first-order differential equa­
tions associated in pairs: 

dhMid't = - bd LM- iDLGtM. 

dGtMid't = - atatM- iDr/ LM; 

dGti.? (d't = -at+ loti!? -j- CLGt:~?, 

dGt!:/ld't = - at-1at:;;? + cLGt:it 

The following notation has been used: 

bL = 1 - BL; a{ = 1 - BL- F{- c{L; 

(21) 

(22) 

(23) 

Equations (21) and (22) are easily integrated, 
the integration constants being determined by the 
boundary conditions 

hM (0) = /(o) V(2L + 1)/47tbMo· 

a7M<o> = J<o)V<21 + 1)f41Cc~~M Mc~~<J = L, L± 1). (24) 
1 

We finally obtain the distribution function of scat­
tered electrons: 

I ( ) _ J(O) ""' (2{ + 1) ( -a1T k~ -cc1T) p ( "") o n, 't - 4n -'.J----::2 e - ze . 1 cos v-
I 1-Rj 

J(O)po • • ~ (21 + 1) kz ( -a,T -a,T) pi("") ---smxsmcp 7, e -e 1..,., 
4n /Vt(l + 1)(1-k,) 

2cxl,2 = bt + ai ± [(bz- ai}2 - 4mf•, 

k, = 2Dzf(bz- al + V (bz- ah2 - 4m) , (25) 

where P 0 = I t;<O> I is the degree of polarization of 
the initial beam, x is the angle between t;<O> and 
n0, and the x axis is in the t;<O>, n0 plane. 

The second term in (25) gives the azimuthal 
asymmetry due to the transverse polarization com­
ponent of the incident beam. For D = 0, which 
represents the absence of spin-orbit coupling, a 2 
and kz vanish, while a1 becomes equal to bz. 
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Equation (25) is thus converted into the Goudsmit­
Saunderson formula 

10 (%, -r) = (/(0>/4rt) ~ (2l + 1) e-bz .. P 1 (cos%). (26) 

For the vector G0 in the case of initial longi­
tudinal polarization ( t~0 > = t<0>, t~> = t~> = 0), 
we obtain 

f(O) '\.1 { ik (21 + 1 )'/, 
Go (n, -r) = V4 LJ I 2 (e-"• .. - e-"•') Ylo 

1t 1-kl 

+ ~ [ {(l + 1)'1• (e-~·' + s2e-~·') + sz['1• (e-~·T- e-~· .. )} vl+l 
1 + s~ I o 

- {l'1'(s~e-~·T + e-~·T) + Sl (l + I)'1•(e-~· .. -e-~· .. )} v~;;-1 ]}. 

2~r.2 = a~+r + a~-r + [(alH- al-1)2 + 4c~] '1', 
Sz = 2cl/(aj+r- al-1 + V (aj+r- al 1) 2 + 4c~ . (27) 

We also write the projections of G0 on the rec­
tangular axes x. TJ, t, which are in the directions 
of the vectors nxn0 , nx [nxn0 ] and n, as follows: 

G =-~ ~ kl (21 + 1) (e-"•'- e-•, .. ) P} (%) 
X 4n (1- k~)Y l (l + 1) ' 

f(o>c(oJ ,__, 1- s~ -s1 1 Vt (l + 1) 1 
G~ = -- L.J (e-~, .. - e-~ ... ) P 1 (%) 

4n 1 + s~ ' 

The projection Gx is independent of the initial 
polarization, but gives the polarization of the ini­
tially unpolarized electron beam due to multiple 
scattering (the Mott effect) . However, this effect 
disappears when D = 0, which occurs in the first 
Born approximation. 

5. SOLUTION OF SYSTEM (II) 

When the scatterer is not very thick each of the 
functions 10 and G0 possesses a very sharp peak 
in the direction of initial electron motion, since the 
Coulomb scattering occurs predominantly in the 
forward direction. It and Gt> which are deter­
mined by (II), will have a considerably smoother 
form, because the functions ( 1- cos J.) <H0/ BT 
and (1 -cos J.) BG0/BT in (II) as well as 10 ( n, t) 
and G0 (n, t) for cos J. < 0, which determine 11 

and G1 on the boundary, are smooth functions. 
Successive approximations can therefore be used 
to solve (II), as in reference 11 for the first equa­
tion of (29) with D = 0. 

We now rewrite (II) in the form 

cos.&alrfa-r = J + (1 -cos%) aiofa-r, 
cos .&aG1/a-r = v + (1 -cos.&) aG0/ih, (29) 

where J and Y denote the differences between 
the respective integrals and It and G1• In first 
approximation we set J = Y = 0. The error thus 
introduced is the smaller, the smoother the func­
tions It and Gt and the sharper the forward peak 
of the single-scattering cross section. A more pre­
cise criterion for the applicability of this approxi­
mation will be given below. 

The equations now have the simple form 

cos.& airfa-r = ( 1 -cos.&) aiofiJr, 
cos %8Gr;a1: = ( 1 -cos%) aGofa-r, (30) 

and their solutions which satisfy the required boun­
dary conditions are as follows: 

Ii1> (n,-r) =(sec%- 1) / 0 (n, -r),} 
(Il for cos%> 0; (31) 

G1 (n, -r) = (sec%-l)G0 (n, -r), 

IP>(n, -r) =(sec%- 1) / 0 (n, -r)- sec%/0 (n, t), } 
<r> cos%< 0. 

G1 (n, •) = (sec%- 1) G0 (n, -r) --sec .&G0 (n, t) 
(32) 

These solutions do not apply to the vicinity of the 
point J. = 7r/2, where they possess a singularity; 
the approximate equations (30) themselves cease 
to be valid near J. = 1r /2. However, the angular 
region near 1r /2 • is of least interest since the num­
ber of particles moving at such angles is very small 

To obtain the next approximation we substitute 
the values found for 11 and Gt into J and Y, 
which we shall regard as known functions. Then 
from (29) with the corresponding boundary condi­
tions we obtain for· cos J. > 0: 

T 

Ii2 > (n, -r) =(sec% -1) / 0 (n, -r) +sec% ~J (n, -r')d-r', 
0 

T 

G~2l (n, -r) =(sec%- 1) Go (n, -r) +sec%~ Y (n, -r') d-r'; (33) 

and for cos J. < 0: 

Ii2> (n, -r) = (sec %- 1) I 0 (n, -r) 
t 

-sec%/0 (n, t)-sec.&~J(n, -r,)d-r', 
T 

t 

-sec% G0 (n, t)- sec%~ Y (n, -r') d-r'. (34) 

The method of estimating corrections contain­
ing J and Y is similar to that by which the 
Fokker-Planck equation is obtained from the exact 
kinetic equation. We shall make use of the sharply 
anisotropic character of the Coulomb cross section 
and shall consider only small-angle scattering. In 
this case the first Born approximation can also be 
applied to heavY nuclei. Replacing s,in 0/2 by 0/2 
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and cos 8/2 by 1 and retaining the terms with the 
largest values when 8 is small, we obtain from 
the formulas given in the Appendix: 

B (8) = 16 cr0q (8)/81; F (8) = 16 cr0bq (8)/83 , 

(35) 

Here q ( 8 ) takes into account the screening of the 
nuclear field by atomic electrons and removes the 
divergence at 0 = 0. 

If0 ( n', T) and Gf0 ( n', T) near the point n' = n 
are expanded in series, keeping terms up to the sec­
ond order inclusively. We thus obtain 

Gi1> (n', -r) = G~ll (n, -r) + (6V) G~1> (n, -r) 

1 ", ll ll (1) + 2 L.J v;vk v,v kG1 (n, -r) 
ill. 

(36) 

and a similar expansion for If!>. In this expres­
sion the difference n'- n is replaced by 0; I 0 I 
= 0, the ¥ector 0 lying in a plane perpendicular 
to n. i and k take two values; 01 = 0 cos <I>, 

0_2 = 0 sin <I>, 0 ::::: <I> ::::: 27T. V' is the portion of the 
gradient which operates on the angles. When inte­
grating over angles we must replace d~' by 
0 dO del>. Using (35) and integrating, we obtain 

J (n, -r} = xV2li1> (n, -r) 1 

Y (n, -r) = x {V2G~1> + 2bx[nxV]x G~1> 

1T 
Here K denotes 81T(a0/a) J q(O)d0/0. 

0 

(37) 

The approximation under discussion can be used 
when the terms containing J and Y in {33) and 
(34) are much smaller than If1> and Gf1>. It fol­
lows from (33), (34), and (37) [see also (41) and 
(42)] that this condition is satisfied when Kt « 
I cos3 J.l, excluding the angular region in the vicin­
ity of J. = 7T/2 and limiting the thickness of the 
scatterer. At small angles I J-2 ::::: Kt I the solution 
of (II) need not be considered at all, since in this 
region a good approximation is given by (25) and 
(27) or by the equations in reference 4. 

We can estimate the order of K by setting 
q ( 0 ) = 0 for 0 < Xo. q ( 0 ) = 1 for 0 > x0, where 
Xo =*:/a, li = A./p is the de Broglie electron wave­
length, a= 0.885 a0z1/J is the Thomas-Fermi 
atomic radius and a0 is the Bohr radius. Xo < 
10-2z1/J for electrons of all energies beginning 
with 150 kev. With a and K calculated in the 
same approximation, we obtain 

2x = X~ In (7r/X.o)· (38) 

Finally, for I and G we obtain for forward 
scattering (cos J. > 0 ) : 

t 

I (n, t) =sec 310 (n, t) +sec.&~ J (n, -r) d-r, 
0 

t 

G (n, t) =sec .&G0 (n, t) +sec.&~ Y (n, -r) d-r, 
0 

and for backward scattering (cos J. < 0): 
t 

I (n, 0) = -sec.&/ 0 (n, t)- sec.&~ J (n, -r) d-r, 
0 

t 

(39) 

G (n, 0) = -sec .&G0 (n, t)- sec.&~ Y (n, -r) d-r. (40) 
0 

It is evident from (39) and (40) that, neglecting 
terms proportional to K, the vector t equals the 
ratio G0/I0, i.e., G0 and I0 are good zeroth ap­
proximations for the determinations of t. 

Integration over T in (39) and (40) can easily 
be performed when the explicit forms of I0 and 
G0 are used. In obtaining explicit expressions for 
J and Y from (37) it is convenient to use the fol­
lowing relations. When G =sec J.G0, where G0 = 
I:GJMYJM (n), we have 

[nxV] x G = sec2.&[nqx n] xG0 + sec.&~ Bi.GJMYIM, (41) 

where n0 is a unit vector in the z direction; 

Bi: = 1, Bf:+1 = L + 1, Bt-1 = -L, 

V2G '= 2 sec33G0 - 2 sec2.& (no • \7) G0 + sec .&V2G0 • (42) 

Operation by V'2 on a spherical vector or spher­
ical harmonic is equivalent to multiplication by 
-L(L + 1). Use of the operator (n0 ·V') is equiv­
alent to calculating the z -component of the gradi­
ent of a spherical harmonic, as was done in refer­
ence 9. 

6. EVALUATION OF INTEGRALS 

We do not know the exact functions f and g 
which determine the amplitude of electron scatter­
ing by an atom. In order to evaluate the integrals 
in (12), (16), {18), and (20) we take the Coulomb 
functions f and g as series in ( aZ ) and con­
sider terms up to ( aZ )3 in the scattering cross 
section. This is the second Born approximation, 
which is apparently sufficiently good for light and 
intermediate nuclei, and can be used for approxi­
mate evaluation in the case of heavy nuclei. 

To allow for screening we shall regard the scat­
tering cross section as vanishing for 8 < x0, the 
angle Xo being given in the preceding section. 

In calculating the integrals it is convenient to 
use the representation of associated Legendre 
polynomials as sums of powers of sin ( 0/2) .12 

As a result of integration terms of the form 
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ln sin(x0/2) f.::j ln (x0 /2) and 1-sinn(x0/2), 
n:::::: 1, appear after the summation signs. The 
second of these (the difference ) can be replaced 
by unity, after which the corresponding sums will 
depend only on l and ln ( Xo I 2 ) and can easily 
be computed directly. We finally obtain the follow­
ing expressions for the integrals: 

Bt = 1 - 81t (a0fa) I (I+ 1)[1n (2/xo) 

-s0 (1) + 1] + 81t~2 (aofa)so(l) 

+ 81t2~1XZ ( a0fa) [s0 (1)- 21]; (43) 

" ~ F (6) P} (6) sin 6 d6 
0 

= - (4a0fa) b2 + 8b (aofa) {1 (l + 1)[1n (2/xo)- S0 (I) + l] 

- 1/2 (l + 1/2)2}- 47tj31XZ (a0fa) (21 + 1fl {(l- ~2)'/• 

X [(1-1)(21 + 3) + 2]-2(1-1)(21 + 3) -5}; (44) 

Cto = 4b2 (a0/a) {2ln (2/xo) -2so(l) -Oto} 

-41t~IXZ (a0/a) b {olo -2/ (21 + 1 )}; 

Ct2=4b2 (a0ja)(l-l){l+2) 

+ 81t~IXZ (a0fa) b(l- I) (I+ 2)/ (21 + 1); 

" 
~ C (6) P} (6) d6 = 2b2 ( a0fa) 
0 

x {21 (1 + 1) [In (2/xo)- s0 (l) + 1]- (I+ 1/ 2) 2 } 

+ 21t~Z (a0/a) b {21- (1 + 1/ 2 ) 2 (X0/2)}; 

Dt = 81t~1XZ (a0fa) [(I- ~2)/1 (l + 1)J'I' 

X { 1/ 4 (I+ r/2) 2 X3ln (2/Xu)- s0 (1)}; 

a= 81ta0 {(2/X~)- ~2 ln (2/X0 ) 

+ 1t~1Xz [2/X0 -In (2/X0)]}; 

l 

s0 {l) = ,S 1/k = '¥(1 + 1) +C. 
k=l, 

(45) 

(46) 

(47) 

(48) 

(49) 

(50) 

w ( l) is the logarithmic derivative of the y func­
tion and C is the Euler constant. 

Equations (43)- (48) are valid for Zx0 « 1. They 
contain one parameter which is partly arbitrary -
the screening angle Xo· 

7. COMPARISON WITH THE THEORY OF MUHL­
SCHLEGEL AND KOPPE 

We shall show that when only small-angle scat­
tering is considered our own Eqs. (25) and (28) go 
over into the corresponding equations in reference 
4. Following Bethe, we replace the Legendre poly­
nomials with Bessel functions through the following 

familiar formula, 12 which holds true for B « 1: 

We shall integrate over (J from 0 to oo. Also, in 
the expansion coefficients (16), (18), and (20) we 
shall neglect all terms except those containing the 
highest power of l, since terms with large l 
make the principal contributions to the sums in 
(25)- (28). These simplifications lead to the fol­
lowing expressions for the expansion coefficients: 

00 

Bt = 21t ~ B (6) J0 (LB) 6 d6, 
0 

00 00 

c:,= -'It~ C(6)J0 (16)6d6-'lt~ C(6)J2 (16)6dll, 
g 0 

00 00 

c:t1 = c:/1 =- 3
2" ~ C(ll)Jo(LB)Ildll'+ ; ~ C(ll)J2(i!l)lldfl, 

0 0 
00 

c:+ll-1 = cL11+1 = + ~ c (!l) <J o (Ill) + J2 (l!l)} a dll, 
0 

00 

Fl = 0, F:+1 = - F:-1 = 21t ~ F (!l) J 1 (Ill) !l dfl, 
0 

00 

D1 = 21t ~ D (ll) JI(l6) ll d6. (52) 

• 
By comparing (52) with the equations (24) of refer­
ence 4 we easily obtain the relation between the 
notation of reference 4 and our notation: 

co (1) = Bt-r:; COo= -r:; c:t1-r: =- 2 (&+II); D,-r: = 0 (1), 

p:+~-r: = cp(1); c:,-r: = -21d1); c1-r: = 1!(1). (53) 

In (25) the summation over l is replaced by an 
integral and the use of (53) leads to 

/(n, -r:) = ~~ ~ d1·1 {cosh Y1~-o2 

+ Vr;~ 82 sinh V&~- o2}e"'-"'·-Y•Jo(l&) 

J(O)p i 
+ 2,. " sin x sin cp j dl·l 

8 . ,,--
X -...==. Slnh y 12 - o2 e"'-"'•-Y• J (!&) 
yy~- 8• 1 1 , 

(54) 

which agrees with (30) of reference 4. 
The equations in (32) can be transformed in sim­

ilar fashion. 
The author is deeply grateful to A. Z. Dolginov 

for valuable suggestions and to V. V. Batygin for 
discussions. 

APPENDIX 

Up to terms containing ( aZ )2 the functions f 
and g are given by 
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f = - F' + a; g = F' cot(6j2) + a tan(6/2), 

F' =- (Ze2j2pv) (1- ~2)'1• [ 1- (2iocZ/~) ( C +In sin})], 

a= (Ze2j2pv) {cot2 ~ + (1t~ocZf2)( cosec} -1) 

+ iocZ [ (2/~) cot2 } ( C + In sin } ) - (~/2) In cosec2 ~ ]} , 

where C is the Euler constant. 
Upto (aZ)3 wehave B(O), C(O), D(9), 

and F ( 9 ) given by 

B (6) = a0 cosec4 } [ 1 - ~2 sin2 ~ + 1t~ocZ sin ~ ( 1 - sin})] , 

C (6) = 2b2a0 cot2f + 2'1t~ba0ocZ (cosec } -1), 

D (6) = 4~a0ocZ ( 1 - ~2)'1• cosec 61n sin}, 

F (6) = 2a0cot} · b [(1 - ~2)'1 • + cot2{] 

+ 21t~a0ocZ tan~ { ( cosec2 ~ - 1) 

+ (1- ~2)''• (1- icosec2 })} (cosec f -1), 
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