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The quantum theory of magnetic resonance absorption due to Kubo and Tomita1 is used to 
describe the phenomenon of nuclear paramagnetic resonance in liquids. The thermal mo
tion of the molecules, which leads to a narrowing of the absorption line, is taken into ac
count on the basis of diffusion theory. The transverse and the longitudinal relaxation times 
and the correction to the gyromagnetic ratio are computed. 

l. The general method developed by Kubo and 
Tomita1 for the determination of the line shape of 
magnetic resonance absorption in radio frequency 
fields has been employed to discuss nuclear mag
netic resonance absorption in liquids and exchange 
narrowing in paramagnetic crystals. 

With the aid of this method it has turned out to 
be possible to take into account the effect of the 
anisotropy of the g -factor on the line shape2 and 
to determine the effect of the exchange interaction 
on the hyperfine structure in electron paramag
netic resonance.3 On the basis of this method, 
Chirkov and Kokin4 calculated the line shape of 
electron resonance absorption in powdered free 
radicals. Skrotski'l and Kokin5 obtained the equa
tions of motion for the magnetization vector and 
expressions for the coefficients appearing in these 
equations. 

To take thermal motion into account, both Kubo 
and Tomita1 and Bloembergen, Purcell, and Pound6 

chose the simplest correlation function 

f (t) = exp(-j t 1/T.c)· (1) 

It is assumed that this form of the function de
scribes both the rotational and the translational 
Brownian motion. The correlation time Tc for 
the rotational Brownian motion is expressed in 
terms of the temperature, the mobility, and the 
dimensions of the molecule, while in the case of 
the translational motion it is expressed in terms 
of the relative position of the paramagnetic mole
cules or ions. 

Such a choice of f ( t) is not general and, 
strictly speaking, is applicable only to the descrip
tion of rotational Brownian motion. 

The re'sults obtained by Skrotski'l and Kokin5 are 
employed in this paper for the determination of the 
transverse and longitudinal relaxation times in 
liquids. In carryi:o.g this out the form of the func
tion is determined on the basis of diffusion theory. 
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2. In what follows we shall assume that the 
sample is situated in a constant magnetic field 
H0 = Hz and a weak radio frequency field h (t). 

The part of the Hamiltonian :fc which does not 
depend on the time may be written in the form of 
three terms 

(2) 

where 
(3) 

is the operator for the interaction of the system of 
magnetic moments with the external constant field 
H0• The operator :fe2 contains the kinetic energy and 
the interactions which do not depend on the spins Ij. 
The magnetic dipole-dipole interactions are de
scribed by the operator :fc' which is regarded as 
a perturbation. 

When the condition tiw 0 « kT is satisfied the 
equilibrium density matrix Po does not depend on 
the spins, and in the case of a homogeneous and 
isotropic liquid in the first approximation does 
not depend on the coordinates. 

In this case we shall obtain for the relaxation 
times T 1 and Tu and for the shift in the reso
nance frequency Aw 0 in accordance with refer
ence:5 

1 2 ' 
r=~.Qcx>.'t>., T±11=T_t, To=T11; (4) 

ex ). 

L\w0 = ~ .Q~>.'t~, (5) 
;>. 

where 

co 

1:~ +iT.~=~ exp(i/..w0.3-)fcx>.(lt)d.S., (6) 

0 

The angle brackets denote averaging over spins 
and coordinates using Po=. const, the curly brack-
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ets denote the symmetrized product of the oper
ators, and fall. ( ~) = 1. 

By utilizing the expressions given in reference 5 ,.., A.' 
for :JC71. ( ~) and :JC71. ( 0), and by averaging over 
spins, we obtain for an isotropic liquid: 

D~2 = ,Q~-1 = 2/aD~l = 2/a.Q~o = IJ2,Q~±2 = 2.Q~±l = 2/s.Q2, 

(8) 
where 

.Q2 = (127t/5) I (I+ 1) g4p.~i-2 ~ (rjk6 I Y2o (&Jkifl[k) !2). (9) 
k 

The summation over k is carried out for fixed 
arbitrary j. 

The function 

fa.~,('r) = {A("C) 

~ <rji.3 {-r)rjk3 (0) Y"2~,(a1k(-r)<p1k(-r)) v;~,(afk'PJ~<l> 
k (10) 

will henceforth be called the correlation function. 
3. To calculate the relaxation times T1 and T11 

and the correction to the gyromagnetic ratio it is 
necessary to obtain the explicit form of the corre
lation function f71. ( T). 

The direct calculation of f71. ( T) from (1 0) does 
not appear to be possible, since for this.it would be 
necessary to have expressions specifying the mo
tion of each molecule. However, we can get around 
this difficulty. 

We base our discussion on the concept that the 
molecules in the liquid undergo translational and 
rotational Brownian motion. 

To describe the translational Brownian motion 
we make use of the equation of free diffusion: 

au iii - DAU = 0, D = kT j 67t"fja, (11) 

where a is the radius of the molecule. 
The probability that at a time t one molecule 

is contained within a volume element dr1 at a 
distance r 12 from a second molecule contained 
within dr2 is given by the following expression: 

U (ri, rio• r2, r20, t) dri dr2 

= (47tDtf3 exp (- (rt- r,o)2j;ta- r2ol)dri dru, (12) 

where r 10 and r 20 define the positions of the mol
ecules at time t = 0. 

We write (12) in the form: 

U (r11 rio• r2, r20, t) dr1 dr2 

= (2!)8 ~ exp (-k2DI t I -k'2Dj t J 

+ ik (r1 - rio) + ik' (r2 - r 20)) dk dk' dr1 dr2 (13) 

and introduce new variables r 1 = r + r 2, dr1 dr2 

= drdr2• 

Then after integrating over r 2 we obtain: 

U(r, r0 , t) = {~U(r1 , r10 , r 2 , r 20 , t)dr2}dr 

= (2!)s ~ exp (- 2k2D It 1- ik (r- r0)) dk dr. (14) 

The last expression gives the probability that 
during a time t > 0 the distance between the mole
cules will have changed by an amount I r - r 0 1. 

By making use of the identity 

exp (ikr} = ~g1 (kr) v;m (}) Y1m (f), ( 15) 

where 

g l (p) =' (27t )'/• i 1 J t+'!o (p) / VP, 
and after carrying out the integration over the 
angles of dk, we obtain: 

00 

U (r, r0 , t) = (2!)8 ~ exp (- 2k2D It J) 
0 

X~ g1 (kr) g; (kro) Y tm (3-ip) Y;m (3-orpo)k1dk. 
lm 

(16) 

(17) 

We obtain the average in expression (10) with 
the aid of the function U (r, r 0, t): 

fA~)= 3 (2a)3 ~ ,-a,-~y2~, (3-, rp) 

(18) 

where we have taken into account the fact that 

~ <r;sl y 21. (3-JkiflJk) 12) = 3 (;a)B ~ • (19) 
k 

Now, by utilizing the properties of spherical 
harmonics and expression (17) for U ( r, r 0, t), 
we obtain 

(20) 

The integrals over r and r 0 may be evaluated 
with the aid of the recurrence relation: 7 

d 
- p-l gl+l (p) = dp [p-/ gl (p)]. (21) 

Then 
00 

f (1:) = (2!)8 ~ exp (- P~~ "' 1) I gl (p) J2 dp, (22) 
0 c 

where we have used the notation T c = ( 471'/3) a3TJ/kT. 
We obtain from (9) and (19): 

,Q2 =~I (I+ 1) g4 [L~ t-2 ~· (2afs. (23) 

4. The correlation function in the case of rota
tional Brownian motion can be found in a manner 
similar to the one utilized above for translational 
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motion. We consider the molecule as a whole to 
be a sphere of radius a, and the distance between 
the magnetic moments bjk within the molecule is 
assumed constant. Moreover, we assume that the 
molecule contains two identical nuclei with mag
netic moments different from zero. 

The solution of the diffusion equation for rota
tional motion similar to (17) is of the form: 

V (&, rp, &o, rpo, t) 

=~Yzm(&, rp)Y;m(&o. rpo)exp(-l(l+~2D'Ill), (24) 
lm 

where D' = kT/81T1']a is the diffusion coefficient 
for rotatio~al motion. The expression 
v ( .J., qJ, .J.0, qJ 0, t) dg determines the probability 
that the molecule is oriented within the solid angle 
dg = sin .J. d.J. dqJ, if at time t = 0 its orientation 
is determined by the angles .J.0, qJ 0• 

The evaluation of the correlation function leads 
in this case to the expression 

f('t) = exp(- aD~!" I)= exp(- I~ I), (25) 

f', 

which agrees in form with (1). 
Averaging over the angles in (9), we obtain: 

(26) 

5. We now proceed to evaulate the quantities 
T~ and T~ which appear in the expressions for 
T l• Tu, and ~w0 • 

In the case of translational Brownian motion 
we obtain after substituting (22) into (6) and after 
carrying out the integration over T: 

00 

't~ + i't~ = 27'tc ~ J~ (p) dp I p (p2 - 9iA'tcWo)· (27) 
0 

This integral can be evaluated if we recall that 
J 3; 2 (p) ma:y be expressed in terms of trigonomet
ric functions. 

We denote 
IX). 

l{x) = ~ J:~ (p) dp 1 p (rs _ ~ xs) 
0 

= (x-•- 2x-6) + exp (- x) (cos x (x-3 + 4x-4 + 2x-5) 

+ sin x (x-8 - 2x'-i)J 

±i {(-~x-2 + x-3 + 2x-') + exp(-x) [cosx(x-3 -2x-6) 

~ sin x (x-3 + 4x-4 + 2x-')lJ , 

X= Jll8\ Al'tcW0 , (28) 

where both in the above and in the following expres
sions we choose the upper sign for A < 0 and the 
lower sign for A > 0. 

FIG. 1. Curves 
showing the depend
ence of 't~MJ0 and 
-t;·>.cuo on 18 Ac..lo 'tc 
labelled respectively 
1 and 3 for transla
tional Brownian mo
tion, and 2 and 4 for 
rotational Brownian 
motion. 
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Thus, in the case of translational Brownian mo
tion 

, 1 :1 2 R I ( ) . 1 3 2 I I ( ) (29) 
'ti. = p, I wo 2~ e X ' 'ti. = I'· I wo 2 X m X • 

(29') 

while in the case of strong fields when TcWo » 1: 

't~ =~'tcOi.O + 2 ~2 'tc(JAJ'tcW0}-'~(l-oi.0), 

't~ = + C ,_ ~ 610 - 2 ~2" 'tc (I AI 'tc Wo)-%) (l - OJ.o)· (29") 

In the case of rotational Brownian motion, on 
substituting (25) into '(6) and on carrying out the 
integration with respect to T, we obtain in a sim
ilar fashion 

, 1 18x2 " 1 x' ( ) 
'ti. = I A I Wo x' + 324 ' 'ti. = t.w0 x' + 324 ' 30 

which have simple asymptotic expressions. 
In the case of weak fields: 

In the case of strong fields: 

't~ = 'tcOi.o + + (l- oi.0), 
A wo '~'c 

1:~ =(}--~)<t-oM)· (30") 
Wo ,_a wo "c 

The dependence of T~ I A I w0 and T~ I A I w0 on 
T cw0, both for translational and rotational motion, 
is shown in Fig. 1. 

Using (8), we obtain 

T ..~_.Q2 = (2l3 't~ + 'fa't~ + 1:~f1; (31) 

T n.Q2 =(~fa 't~ + 8fa 't~t1 ; (32) 

.Q21 ~wo = (213 't; +lis 't~rl. (33) 

Thus, to obtain the dependence of T1, Tu, and 
~w0 on T cWo both for translational and for rota
tional Brownian motion it is sufficient to know the 
value of g 2, which depends on the structure of the 
molecules, and on the structure of the liquid. Curves 
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FIG. 2. Curves showing the dependence of T 110 2/ru0 , 

T 102/ruo and 0 2/&u0ru0 on 'tctU0 , labelled respectively 2, 6, 
and 3 for translational Brownian motion and by 1, 5, 4 for the 
case of rotational Brownian motion. 

of T102/w0, Til02/w0, and 0 2/t..w 0w0 vs. T 0 w0 

are shown in Fig. 2. 
6. As an example we consider the case of nu

clear magnetic resonance in a liquid whose mole
cules contain two identical nuclei with magnetic 
moments differing from zero (water ) with spins 
I=!. 

In this case the operator ~ can be separated 
into two parts Jc2t and JC2r, which describe the 
motion of the centers of masses of the molecules 
and the rotation of the molecule as a whole about 
the common center of mass. The distance b be
tween nuclei belonging to the same molecule is 
constant. 

The rotational Brownian motion leads only to a 
variation in the angle between the straight line 
joining these nuclei and the direction of the field 
Ho. 

The translational Brownian motion alters the 
relative position of nuclei belonging to different 
molecules. 

If we neglect the correlation between the trans
lational and the rotational Brownian motions, each 
of the expressions for TJ:1, Tij1, and t..w0 de
fined by (4) and (5) can be separated into two terms 
corresponding to the translational and the rotational 
Brownian motion of the molecules. 

In calculating 0 2 for the translational motion 
of the molecule we should take into account the fact 
that a fraction of the molecules (% ) has a total 
nuclear spin equal to unity while the remaining 
fraction of the molecules ( 1/ 4 ) has a spin equal 
to zero. 

Then for the translational motion we have 

(34) 

where N/V is the number of water molecules per 
unit volume, 

In the case of rotational motion we have: 

(35) 

Now, by utilizing (29) - (32) and (33) - (35) we 
can obtain expressions for the relaxation times 
T1 and Til and for t..w0• 

In weak fields when T 0 w0 « 1 we have: 

....!__ = _!_ _ ....!__ _ s; g4~J-4Ji.-2-r (~!!__a-s+ b-6) (36) 
T.L T

11
- T - 2 o c 5 V ' 

The transverse and the longitudinal relaxation 
times are equal. 

The effective gyromagnetic ratio is of the form 

(37) 

In the first approximation the correction is de
termined by the translational Brownian motion 
where 0~ is given by (34). 

In the case of strong fields when T 0 w0 » 1 we 
have: 

(38) 

(39) 

(40) 

Here T11 is determined largely by the transla
tional Brownian motion. 

7. The expressions for T1 and T11 in the ex
ample discussed above have been obtained by Bloem
bergen, Purcell, and Pound. 6 In reference 1 it was 
pointed out that these calculations are not accurate. 

The expressions for T1 and Til obtained in 
reference 6 in the case of weak fields 

differ from (36) by numerical coefficients. Taking 
'for water8 at 20°C a= 1.45 x 10-8 em, b = 1.54 x 
10-8 em, Tc = 0.32 x 10-11 sec, V/N = 30 x 10-24 

cm3, we obtain.from (36) T =Til= T1 = 3 sec, 
which agrees with experimental data (Til = T 1 = 
3. 6 ± 0.4 sec). 9 For t..w0 we obtain in this case 

~w0 = 1.4 YWo·l0-7 sec-1 (42) 

As can be seen from (39) and Fig. 2, in strong 
fields Til is proportional to T~2 • Such a depend
ence is determined by the translational Brownian 
motion, which makes the principal contribution in 
the case of strong fields. 

For strong fields the dependence of Til on T 0 , 

determined by (39), is given on a logarithmic scale 
in the region w0T c » 1 by a straight line with a 
slope of 26.5°, and not of 45°, as called for by the 
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theory of Bloem bergen, Purcell, and Pound. 6 

e experimental values given in the paper of 
Bloembergen, Purcell, and Pound6 for the relaxa
tion times for glycerine at different values of TJIT 
fall in the case of TJ /T » 1 on a less steep straight 
line with a slope of approximately 30°' which is in 
good agreement with the conclusions reached above. 
Moreover, it follows from (41) that in strong fields 
T11 is proportional to wY2, and not to w~, as in 
reference 6, which also agrees much better with 
experimental data. 

Thus, for the description of the phenomenon of 
nuclear resonance in liquids it is necessary to take 
into account the translational as well as the rota
tional Brownian motion of the molecules. More
over the form of the correlation function for the 
two types of motion turns out to be different. Only 
in the case of weak fields when w0T c « 1 do the 
relaxation times turn out to be not very sensitive 
to the specific form of the relaxation function. 
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