SOVIET PHYSICS JETP

VOLUME 36 (9), NUMBER 2

AUGUST, 1959

ON THE THEORY OF NUCLEAR PARAMAGNETIC RESONANCE IN LIQUIDS

G. V. SKROTSKIT and A. A. KOKIN

Submitted to JETP editor June 23, 1958; resubmitted October 28, 1958
J. Exptl. Theoret. Phys. (U.S.S.R.) 36, 481-487 (February, 1959)

The quantum theory of magnetic resonance absorption due to Kubo and Tomita! is used to
describe the phenomenon of nuclear paramagnetic resonance in liquids. The thermal mo-
tion of the molecules, which leads to a narrowing of the absorption line, is taken into ac-
count on the basis of diffusion theory. The transverse and the longitudinal relaxation times
and the correction to the gyromagnetic ratio are computed.

].. The general method developed by Kubo and
Tomita! for the determination of the line shape of
magnetic resonance absorption in radio frequency
fields has been employed to discuss nuclear mag-
netic resonance absorption in liquids and exchange
narrowing in paramagnetic crystals.

With the aid of this method it has turned out to
be possible to take into account the effect of the
anisotropy of the g-factor on the line shape? and
to determine the effect of the exchange interaction
on the hyperfine structure in electron paramag-
netic resonance.® On the basis of this method,
Chirkov and Kokin* calculated the line shape of
electron resonance absorption in powdered free
radicals. Skrotskif and Kokin® obtained the equa-
tions of motion for the magnetization vector and
expressions for the coefficients appearing in these
equations.

To take thermal motion into account, both Kubo
and Tomita'! and Bloembergen, Purcell, and Pound®
chose the simplest correlation function

f(t) =exp(—[t|[x) (1)

It is assumed that this form of the function de-
scribes both the rotational and the translational
Brownian motion. The correlation time 7, for
the rotational Brownian motion is expressed in
terms of the temperature, the mobility, and the
dimensions of the molecule, while in the case of
the translational motion it is expressed in terms
of the relative position of the paramagnetic mole-
cules or ions.

Such a choice of f(t) is not general and,
strictly speaking, is applicable only to the descrip-
tion of rotational Brownian motion.

The results obtained by Skrotskif and Kokin® are
employed in this paper for the determination of the
transverse and longitudinal relaxation times in
liquids. In carryipg this out the form of the func-
tion is determined on the basis of diffusion theory.

2. In what follows we shall assume that the
sample is situated in a constant magnetic field
Hyp = H, and a weak radio freque;ncy field h(t).

The part of the Hamiltonian 3 which does not
depend on the time may be written in the form of
three terms

H=F+H+ (2)

where . .
Ftr = —hao Vi hwy = guoH, &)
i

is the operator for the interaction of the system of
magnetic moments with the external constant field
Hy. The operator 3?12 contains the kinetic energy and
the interactions which do not depend on the spins Ij.
The magnetic dipole-dipole interactions are de-
scribed by the operator #’ which is regarded as

a perturbation.

When the condition hwy «< kT is satisfied the
equilibrium density matrix p, does not depend on
the spins, and in the case of a homogeneous and
isotropic liquid in the first approximation does
not depend on the coordinates.

In this case we shall obtain for the relaxation
times T) and T and for the shift in the reso-
nance frequency Aw, in accordance with refer-
ence:’

1 ,
T, = N Qo Tuld=Ty, To=Ty; (4)
A
Awy = S Oy, (5)
A
where
T 4 ity = S exp (iAwo?) fan (9) d9, (6)
1)

Qifar (9) = ([ MaFPr ()] T2 (0) Mal}y [ 22 (| Mal?). (7)

The angle brackets denote averaging over spins
and coordinates using p, = const, the curly brack-
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ets denote the symmetrized product of the oper-
ators, and fg (¢4) = 1.

BX utilizing thg expressions given in reference 5
for %) (¢#) and %) (0), and by averaging over
spins, we obtain for an isotropic liquid:

Qis = -Q 1—1 = /3911 = 2/3~ng = 1/2'Qgt2 = 29(’&1'= 2/392,

Qf ,=0Q5%=0, (8)
where
Q= (12=/5)1 (I + 1) g‘uoh‘gz e’ | Yoo (Bpeppe) [ (9)
The summation over k is carried out for fixed
arbitrary j.
The function
far () = fa (%)
2 <rie B(r)r ,k (0) ¥ (8 (7) @4 (7)) ygx (S7xPpn)>
10
;(’j_k yz)\ (‘9/k9jk)|2> ( )

will henceforth be called the correlation function.

3. To calculate the relaxation times T) and T)
and the correction to the gyromagnetic ratio it is
necessary to obtain the explicit form of the corre-
lation function f) (7).

The direct calculation of f) (7) from (10) does
not appear to be possible, since for this.it would be
necessary to have expressions specifying the mo-
tion of each molecule. However, we can get around
this difficulty.

We base our discussion on the concept that the
molecules in the liquid undergo translational and
rotational Brownian motion.

To describe the translational Brownian motion
we make use of the equation of free diffusion:

_‘%{_ —DAU =0, D= kT /[6rya, (11)

where a is the radius of the molecule.

The probability that at a time t one molecule
is contained within a volume element dr; ata
distance r;; from a second molecule contained
within dr, is given by the following expression:

U (ry, Ty, Ty, Ty, t)drdr,

= (4xDt) S exp ( __(ri—ri0) 4 (ra— r,o)’) drydr,,  (12)

4Dt

where ry, and r,, define the positions of the mol-
ecules at time t =0.
We write (12) in the form:

U(rn T10, T3, Tao, £)dr,dr,

= e \€%p (—#D|¢| — KD t]

+ ik (ry —ryq) + ik’ (ry —rg)) dk dk’ drydr,  (13)

and introduce new variables ry =r +r,;, drydr,
=drdr,.

and A. A. KOKIN
Then after integrating over r, we obtain:
U(r, re, t) = {SU(rl, 10, T2, oo, 1) drz}dr
~ )s Sexp( 2kD [ t| — ik (r —ro)) dkdr. (14)

The last expression gives the probability that
during a time t > 0 the distance between the mole-
cules will have changed by an amount |r-r].

By making use of the identity

. . [k
exp (it = g, ) V3 (5) Vim(£),  (19)
im
where
g, () = @m)i' T (p) [ Vs (16)
and after carrying out the integration over the
angles of dk, we obtain:
1 (o]
Ut 1o = gexp (— 2k2D | t])
)
% N8, (kr) g} (kro) Y im (99) Y 1m (B0 0) K2 dk. an
Im 17

We obtain the average in expression (10) with
the aid of the function U (r, ry, t):

h@=3@ap {rriva®, ¢

X Yar (Sop0) U (T, 1o, t)drdr,, (18)
where we have taken into account the fact that
N
2( 8| Y or (Binpp) 2> = 3(2[1), O (19)

Now, by ut111z1ng the properties of spherical
harmonics and expression (17) for U (r, ry, t),
we obtain

r@=1f(
| oo 2

YGRS

2a

=3 (%)“’ §°k= dkexp (— 282 D|¢|) (20)

The integrals over r and r, may be evaluated
with the aid of the recurrence relation:’

—o g, () = 2l g, @) (21)
Then
[0 = g \eop (— o) le @ Pde (22)

where we have used the notation 7, = (47/3)a’n/kT.
We obtain from (9) and (19):

Q=1+ 1) g pgn 3 (2a). 23)
4. The correlation function in the case of rota-
tional Brownian motion can be found in a manner

similar to the one utilized above for translational



ON THE THEORY OF NUCLEAR PARAMAGNETIC RESONANCE IN LIQUIDS 337

motion. We consider the molecule as a whole to
be 4 sphere of radius a, and the distance between
the magnetic moments bjk within the molecule is
assumed constant. Moreover, we assume that the
molecule contains two identical nuclei with mag-
netic moments different from zero.

The solution of the diffusion equation for rota-
tional motion similar to (17) is of the form:

v (¥, @, %o, Po, t)

. ! 1) D’
= NYin(®, ) Yin (B0, qu)exp(— L
im

[
). @4

where D’ = kT/8mna is the diffusion coefficient
for rotational motion. The expression
v (4, @, ¥y, @, t)dQ2 determines the probability
that the molecule is oriented within the solid angle
dQ = sin ¢ d¢dy, if at time t =0 its orientation
is determined by the angles ), ¢,.

The evaluation of the correlation function leads
in this case to the expression

D l'rl [zl
= ex = —_—, 25
T =exp(—=7") =ep(—1Z),  (29)
which agrees in"form with (1).
Averaging.qver the angles in (9), we obtain:
=310+ ) gturg. (26)

5. We now proceed to evaulate the quantities
mh and 1'5( which appear in the expressions for
Ty, Ty, and Aw,.

In the case of translational Brownian motion
we obtain after substituting (22) into (6) and after
carrying out the integration over T:

(-]
< it = 27%81; () dp/p(0* — 9rtewg).  (27)
0

This integral can be evaluated if we recall that
J3/2 (p) may be expressed in terms of trigonomet-
ric functions.

We denote

169 = (7, 0 do o (12— )
;
= (10— 2x°9) + exp— %) [c0s £ (¥ + 4574 + 2°9)
+ sinx (¢ — 2¢9)]
+i {(_ 2rrpag 2x") + exp (— x) [cos x (¥~ — 2x79)
— sinx (¥ + 4x7% + 2x“)]} ,

x = V18] INES (28)

where both in the above and in the following expres-
sions we choose the upper sign for A <0 and the
lower sign for A > 0.

HAw,
FIG. 1. Curves w
showing the depend-
ence of 'rl o and 71
TyAw, on 18 Aw,Te
labelled respectively '/ )
1 and 3 for transla- F
tional Brownian mo-
tion, and 2 and 4 for Y
rotational Brownian T4/ Vil 4

motion. al 10 Vi 7
brwyz;

Thus, in the case of translational Brownian mo-
tion

1
l)\lﬁ)g 2

1 3 »
[aTwo %gczReI(x), =

‘t;‘ =
In weak fields when Towg < 1:
. 18 9
TA=?TC— VZ—‘L‘; ‘/ ’)\!Tc(l)o,

by — 9 TN
G =F Ve, (29)

while in the case of strong fields when Towy > 1:

, 18
% = 2 g e e (| M T w0) % (1 — Bo),
A TS 2V3

T;l‘::‘:(l)\ilm 2V2 3775 “e (| M Te o)™ z)(1‘—87\0)- (29")

In the case of rotational Brownian motion, on
substituting (25) into (6) and on carrying out the
integration with respect to 7, we obtain in a sim-
ilar fashion

1 18x2

, 1
‘%=1x|o>ox‘+324"x_‘i"x4+324’ (30)
which have simple asymptotic expressions.
In the case of weak fields:
T, =T — N2}, 1 = Moyl (30%)
In the case of strong fields
“A——Tcako-l' Yol ( — Bx)s
1 1
7 = (——)@0 BEEYPE L) p 12)(1 — Bx)- (307)
c

The dependence of 75 |A|wy and 73 |A|w, on
TeWg, both for translational and rotational motion,
is shown in -Fig. 1.

Using (8), we obtain

T1Q% = Clsvy+*/s7 + )7 (1)
T)Q% = (37, +%/57) 7 (32)
Q[ Awy = (}fs 7, + YTyt 33)

Thus, to obtain the dependence of T;, Tj, and
Awy on Tewp both for translational and for rota-
tional Brownian motion it is sufficient to know the
value of 92, which depends on the structure of the
molecules, and on the structure of the liquid. Curves
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FIG. 2. Curves showing the dependence of T“Q’/ Wos
T ;Q%/w, and Q*/Aw,w, on Tcw,, labelled respectively 2, 6,
and 3 for translational Brownian motion and by 1, 5, 4 for the
case of rotational Brownian motion.

of T 9%w), T 9% wy, and Q¥ Awyw, vs. Tow,
are shown in Fig. 2.

6. As an example we consider the case of nu-
clear magnetic resonance in a liquid whose mole-
cules contain two identical nuclei with magnetic
moments differing from zero (water) with spins
I=3.

In this case the operator JCZ can be separated
into two parts Sczt and f’czr’ which describe the
motion of the centers of masses of the molecules
and the rotation of the molecule as a whole about
the common center of mass. The distance b be-
tween nuclei belonging to the same molecule is
constant.

The rotational Brownian motion leads only to a
variation in the angle between the straight line
joining these nuclei and the direction of the field
H,.

The translational Brownian motion alters the
relative position of nuclei belonging to different
molecules.

If we neglect the correlation between the trans-
lational and the rotational Brownian motions, each
of the expressions for TI‘, Tﬁ‘, and Aw, de-
fined by (4) and (5) can be separated into two terms
corresponding to the translational and the rotational
Brownian motion of the molecules.

In calculating 2 for the translational motion
of the molecule we should take into account the fact
that a fraction of the molecules (%) has a total
nuclear spin equal to unity while the remaining
fraction of the molecules (1/4) has a spin equal
to zero.

Then for the translational motion we have
Q=2 g o, (34)
where N/V is the number of water molecules per
unit volume,

and A. A. KOKIN

In the case of rotational motion we have:
=9 gt ok 27 (35)

Now, by utilizing (29) — (32) and (33) — (35) we
can obtain expressions for the relaxation times
T) and T) and for Aw.

In weak fields when 7T, w; < 1 we have:

1 1 o (6 N _ _
== =thet (T a4 07). @6
The transverse and the longitudinal relaxation

times are equal.
The effective gyromagnetic ratio is of the form

=1(1+52)= (ler_+3 l/——) 37)

In the first approximation the correction is de-
termined by the translational Brownian motion
where Qf is given by (34).

In the case of strong fields when Towy > 1 we
have:

1 - 6 . _
o= meEre Ty et +67); (38)
1 V241 o N _
= R e (69)
T =¥. (40)

Here T is determined largely by the transla-
tional Brownian motion.

7. The expressions for T; and T) in the ex-
ample discussed above have been obtained by Bloem-
bergen, Purcell, and Pound.® In reference 1 it was
pointed out that these calculations are not accurate.

The expressions for T) and T obtained in
reference 6 in the case of weak fields

1 _ 3 N _ _
0.8 === g Wi (3 = 7 ¢+ 67) (41)

differ from (36) by numerical coefficients. Taking
for water® at 20°C a=1.45x10"% cm, b =1.54 x
108 em, 7,=0.32%x107" sec, V/N =30 x107%
cm®, we obtain.from (36) T = T, =T, =3 sec,
which agrees with experimental data (T; =T, =
3.6 £+ 0.4 sec).” For Aw, we obtain in this case

Awy = 1.4Y @,-10"7 sec™! 42)

As can be seen from (39) and Fig. 2, in strong
fields T, is proportional to Tf:/z. Such a depend-
ence is determined by the translational Brownian
motion, which makes the principal contribution in
the case of strong fields.

For strong fields the dependence of T| on 7,
determined by (39), is given on a logarithmic scale
in the region wyTe > 1 by a straight line with a
slope of 26.5°, and not of 45°, as called for by the
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theory of Bloembergen, Purcell, and Pound.®

e experimental values given in the paper of
Bloembergen, Purcell, and Pound® for the relaxa-
tion times for glycerine at different values of 7/T
fall in the case of /T > 1 on a less steep straight
line with a slope of approximately 30°, which is in

good agreement with the conclusions reached above.

Moreover, it follows from (41) that in strong fields
T} is proportional to wg/ 2 and not to wg, as in
reference 6, which also agrees much better with
experimental data.

Thus, for the description of the phenomenon of
nuclear resonance in liquids it is necessary to take
into account the translational as well as the rota-
tional Brownian motion of the molecules. More-
over the form of the correlation function for the
two types of motion turns out to be different. Only
in the case of weak fields when w;7; < 1 do the
relaxation times turn out to be not very sensitive
to the specific form of the relaxation function.
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