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The problem of the determination of the moment of inertia is considered. The formula ob
tained has as the simplest consequence that, even in the case of a spherically symmetric 
system, the moment of inertia is different from zero, and is not even very small as com
pared to the moment of inertia of a rigid body. 

THE problem of the determination of the moment 
of inertia has been considered in a number of 
papers1- 3 (a more detailed bibliography is given 
in a paper by Bohr and Mottelson, 3 which is soon 
to appear). However, as far as we know, a suffi
ciently general expression for the operator of the 
moment of inertia has so far not been given. One 
of the aims of the present paper is to fill this gap 
to some extent by investigating the problem of the 
determination of the moment of inertia of a system 
rotating about a fixed axis. 

We also discuss some estimates for the lower 
limit of the possible values of the moment of iner
tia. One of these estimates leads to the result that 
the moment of inertia of a spherically symmetric 
system (we mainly have in mind the spherically 
symmetric nucleus) is not only different from zero, 
as is frequently assumed, but is not even very small 
as compared to the momentum of inertia of a rigid 
body. 

l. THE COLLECTIVE ANGLE VARIABLE cp 

We shall attempt to develop the theory in a form 
which is independent of the specific method of sep
aration of the collective angular variable. The sep
aration itself is, however, a necessary feature of 
the thee>ry. It may be achieved in the following 
manner. 

Suppose we have a system of N particles with, 
in general, different masses. The Hamiltonian of 
the system is equal to 

N 

H = ~ (li 2/2m) (a2j(lx 2 + a2 jay 2 + a2 jaz2 ) + U. (1) 

The summation in (1) goes over all particles; the 
particle indices are omitted. 

We assume that the potential U is independent 
of the velocity and commutes with the operator cor
responding to the projection of the total angular 
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momentum on the axis of rotation, which we choose 
as the z axis. We use the notation Mz = M, 
where 

N 

M = ~-iii (xa;ay- ya;ax). (2) 

Then 

[H, M] =0. (3) 

We introduce a certain operator cp, which de
pends only on the coordinates x and y and satis
fies the condition 

[M, crl =-iii. (4) 

With the help of the equations 

(i/li) [H, crl c=- V + M/1~, -r.-z [[H, cp], cp] = 1/1~ (5) 

~ 

we also introduce the operators V and I0• Writ-
ten more explicitly, these operators have the form 

N 

-k = ~ -~[(~/ + (~fl , 

V = ~ - i li [;_ (x ~ - y !..) 
fo , ay ax (6) 

_ _!_ (~ ~ + a'? ~) _ 1__ (a~'~'- + i)~ \] 
m ax ax ay ay 2m ax2 ' ay2 ) • 

It follows from equations (3) and (4) that the oper
ators i 0 and V commute with cp and M. The 
same obviously holds for the operator H' defined 
by 

(7) 

The quantity cp can always be regarded as a 
new independent variable, by choosing the remain
ing 3N -1 variables ~ such that 

[M,~]=~O (8) 

for all ~. The operator M then has the form 
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M = - ihofocp, 

and the operators H!, I0, and V are functions of 
~ and a;a~ only. 

The new variable cp can be interpreted as the 
angle oi rotation of the system as a whole (for 
more detail, cf. Sec. '3 ). Correspondingly, the vari
ables ~ have the meaning of internal coordinates. 
The operator H' represents the energy of internal 
motion. The operator VM represents the energy 
of interaction of the internal motion with the rota
tion. 

2. MOMENT OF INERTIA 

We introduce the complete system of eigenfunc
tions of the operators H and M: 

(9) 

The functions belonging to the eigenvalue Mn = 0 
will be denoted by <Pn. 

We consider an initial state --¥0 with eigenvalues 
E0 and M0• We may write 

'Yo= (2·nr''• exp {f Mrp} \f~ , (10) 

where --¥'0 is a function depending only on the in
ternal variables ~. By operating on --¥0 with the 
Hamiltonian (7) we obtain 

with M'¥~ = 0. (ll) 

Equation (11) is initially obtained for integral 
values of M0/n. It remains, however, meaningful 
for arbitrary values of M0 /n. It then determines 
E0 as a function of some continuous parameter M0• 

We assume that, for not too large M0, this func
tion can be expanded in powers of M0: 

Eo (M0 ) = E0 (0) + M~j21 + . . . . (12) 

One easily sees that the absence of the odd 
powers of M0 in expansion (12) is connected with 
the equivalence of the right and left handed systems 
of coordinates. 

The expansion (12) can be terminated after the 
quadratic term in M0• In this case we talk about 
a purely rotational spectrum. In the presence of 
higher terms in the expansion, the rotational spec
trum will be more or less modified. Nevertheless, 
in both cases, the quantity I should obviously be 
interpreted as a moment of inertia. The reciprocal . 
quantity 

B = 1 j I (13) 

is naturally called the inverse moment of inertia. 
It follows from (12) that 

(14) 

We note that the expansion (12) is formally just the 
usual perturbation series for the case that M0 is 
a small parameter. The coefficients of this series 
are well known. In particular, we obtain the coeffi
cient (14) by applying the operator 1/i0 once and 
the operator V twice. As a result, we obtain 

This is the required expression for the moment of 
in tertia for the case of rotation about a fixed axis z. 

In operator form we have 

~ = _;_-2VP-1-V, 
I lo H'- Eo 

(16) 

where P denotes the principal value. The oper
ator 1/i may be written in a more convenient form 
by assuming the existence of an operator A satis
fying the condition 

V = (ijh) [H', A], (17) 

where 

Von= (- i}li) (En- Eo) Aon, 

In this case we may write 

and therefore 

ljl = If!~- (i/h) [V, A]. (18) 

As an example we consider the problem of two 
interacting two-dimensional rigid rotators, each 
of which is characterized by its constant moment 
of inertia f-li ( i = 1, 2, ... , N ) . 

The Hamiltonian of this system is 
N 

H=ZJ (-h 2f2p.,')o 2 forrz+ u. (19) 
i=I 

CfJi is the angular coordinate of the i -th rotator. 
It is entirely obvious that, by choosing the col

lective angular variable cp in the form 
N N 

9 = LJ (J,{f!;/ :LJ p.;, (20) 
i=I i=I 

we achieve a complete separation of the internal 
and external motions ( V = 0 ! ) . The moment of 
inertia is equal to 

N 

I= I0 = L} p.;. (21) 
i=l 

We are, however, interested in the case when cp 
is chosen such that the operator V is different 
from zero. We then have to use the general for-
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mulas (15) or (18) for the determination of the mo
ment of inertia. In P.articular, we assume that 
<fJ = <{J 1; then 

N N 

V = -~ ~ - ih y_ · A = + ~ fl·; (cpi- <p). (22) 
t-tl i=2 acr1 ' '=2 .~· 

Substituting the operators (22) in formula (18) we 
again obtain the correct value (20) for the moment 
of inertia. In the given special case it is thus pos
sible to verify explicitly the independence of the 
moment of inertia of the choice of <fJ. This inde
pendence corresponds to the fact that the moment 
of inertia is determined by observable quantities 
(the energy and the projection of the angular mo
mentum on the axis of rotation), which are, of 
course, invariant under arbitrary coordinate 
transformations. 

3. ANGULAR VELOCITY OF THE SYSTEM AS A 
WHOLE 

The inverse moment of inertia can also be de
termined as the derivative of the angular velocity 
with respect to the projection of the angular mo
mentum on the axis of rotation z. The meaning 
of the angular velocity of the system is, however, 
not completely obvious. In this connection it is of 
interest to investigate the reverse problem: the 
determination of the angular velocity as that quan
tity which, upon differentiation with respect to M0, 

gives the correct expression for the inverse mo
ment of inertia. It is easily seen that the following 
quantity has this property: 

(23) 

where the dot above the operator denotes the com
mutator with the Hamiltonian multiplied by i/n. 

Indeed, we have, according to formula (11), 

(24) 

Furthermore, 

·ur -·- (- ,, + ~) 'Y <:pro-- v ' o, 
I o (25) 

hence 

(26) 

and, finally, 

This is exactly formula (15). 

We can easily determine the angular accelera
tion by expanding expression (23) for the angular 
velocity of the system. It may also be used for 
the determination of the moment of inertia. We 
again obtain, of course, the same result (15) as 
before. 

4. ESTIMATE OF THE LOWER LIMIT OF THE 
MOMENT OF INERTIA 

Expression (15) for the inverse moment of in
ertia consists of two structurally different terms. 
The first term, 

(27) 

defines some "bare" moment I0, which plays the 
role of a generalized "bare" mass corresponding 
to the generalized coordinate <fJ. The second term 
represents a correction to the "bare" moment due 
to the coupling between the separate particles of 
the system during the rotation. It is immediately 
clear from formula (15) that, at least for the ground 
state of the system, the "bare" moment of inertia 
is always smaller than the true moment: 

(28) 

The "bare" moment therefore represents a lower 
limit for the possible values of the total moment. 
In this connection it is very desirable to find that 
<fJ for which the "bare" moment has the largest 
value. The case mostly considered in the litera
ture so far is that in which <fJ represents the angle 
of rotation of the principal axes of the system A (see, 
e.g., reference 2 ). In this case the operator I0 

represents the so-called hydrodynamic moment 
of inertia 

10 = {[~ m (x2 _ y~) r + [~ 2mxy n; ~ m (x2 + y2 ). 

It is an interesting fact that, after averaging over 
a spherically symmetrical distribution, this quan
tity takes on a nonvanishing, if small, value. 

By choosing <fJ in the form 

(29) 

where Pi and <Pi are the cylindrical coordinates 
of the i -th particle, and Pi = ( x{ + YI) i/z, we may 
convince ourselves that even in the completely 
symmetrical case the moment of inertia is not only 
different from zero, but is not even very small in 
comparison to the moment of inertia of a rigid 
body. Indeed, we then obtain the following expres
sion for I0: 
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N I N IN 
lo = l:/nipJ I { 1 + 4 i~lllliPJ (<f•i- tJ)2' i~l m,pJ}. (30) 

The quantity ( Cfi - cp )2 may be replaced by its 
average value 

and can then be taken outside the summation sign. 
This yields 

" ' <) ( 4n2 'l 2 N I N 
1 o :::::; ~~1 mi['i \1 + 3) = -14 i~l m;r' i. (31) 

The moment of inertia of the ground state can 

therefore not be smaller than 1/ 14 of the moment 
of inertia of a rigid body. 

The author is grateful to Prof. A. S. Davydov 
for a discussion of the results of the present paper. 
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